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Computer-Aided Design (CAD)

® Steps in modern digital system design:

| Requirements |

¥

| Design specifications |

|

Design formulation

¥

Design entry
VHIH., Verilog, schemstic captune

v

Logic synthesis

i

Post synthesis sirmulaton

v

| Simufation |

Mapping, placement, routing

TPGA programming unil
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| Configured FPGAs |
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CAD (continued)

¢ Target technologies that are available:

b

Field
programmahle pate
arrays (FPGAs)

Cost Desipgn-Time Performance

PALs, PLAs, PLDs

Togic elements

Mask A
programemable gate
arrays (MPGAs)

Density and degree of costomization

specific integrated circuits (ASICs).
A\ SUNY — New Paltz

» Elect. & Comp. Eng.

® Most common: field programmable gate arrays (FPGAs) and application-

(HDLs)

structure of digital systems.

' i'i‘\l SUNY - New Paltz

» Elect. & Comp. Eng.

Hardware Description Languages

® HDLs can describe a digital system at several different

levels—behavioral, data flow, and structural.
® HDLs lead naturally to a top-down design methodology.
* Two popular HDLs—VHDL and Verilog.
® Verilog is a HDL used to describe the behavior and / or

Introduction to Verilog
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Compilation, Simulation, and Synthesis of
Verilog Code

¢ Simulation and synthesis process:

VHIN. Simuluwtor
libraries commands
Intermediaie l
" cod .
w‘ﬂzl‘_"‘ Compiler ' - ¥ Simulator Simulator
o aolpul
Synthesizer ¥ Tmplementer —#  Hardware

¢ A netlist is a list of required components and their interconnections.

A\ SUNY - New Paltz
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Basic Verilog

Lexical Convention

Lexical convention are close to C++.

¢ Comment
® // to the end of the line.

® /* to */ across several lines

Keywords are lower case letter & it is case sensitive
VERILOG uses 4 valued logic: 0, 1, x and z
Comments: // Verilog code for AND-OR-INVERT gate

module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

<functionality_of_module>

\ endmodule
AYSUNY — New Paltz
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Behavioral and Structural Verilog

® Any circuit or device can be represented in multiple forms of

abstraction.

NOT AND

el
@ | e natdmdm |

* Example:

CMOS 7400
1

3 T
® " 551 Gates
1
8

A .
(¢} C Logic
R 1

@ « Transistor

A
v ‘

| 68 + 0. -~ ~
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Behavioral and Structural Verilog
(continued)
e 3 Models:

e Structural:
Specifies more details.

Components used and the structure of the interconnection between the

components are clearly specified.

At a low level of abstraction.
® Data Flow (Register Transfer Language):

Data path and control signals are specified.

System is described in terms of the data transfer between registers.
® Behavioral:

Specifies only the behavior at a higher level of abstraction.

Does not imply any particular structure or technology.

» Elect. & Comp. Eng.
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Taste of Verilog

Module name

input a, b;
output
wire c_out_bar;

\

xor (sum, a, b);

// xor G1(sum, a, bﬂ
nand (c_out_bar, a, b);

not (c_out, c_out_bar);

endmodule

Verilog keywords

A SUNY — New Paltz

¥ Elect. & Comp. Eng.

Modlule ports
module Add_half ( sum, c_out, a, b );

Dedlaration of port
Sum, c_out; . poupe P2

Dedlaration of internal
signal

Instantiation of primitive
ates

G1

a__)Di
b sum
c_out_bqr

c_out

Lexical Convention
- Numbers are specified in the

traditional form or below .

- Size: contains decimal digitals
that specify the size of the

. Base format: is the single

the following characters

b(binary),d(decimal),o(octal), h(hex).

<size><base format><number> |.

constant in the number of bits. |

character ¢ followed by one of |

Example :

347 -- decimal number
4’b101 -- 4- bit 0101,
2’012 -- 2-bit octal number
5"h87f7 -- 5-digit 87F7,,
2'd83 -- 2-digit decimal
String in double quotes

“ this is a introduction”

- Number: legal digital.

| | SUNY - New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021



EGC 455
Design and Verification of System on Chip

Three Modeling Styles in Verilog

® Structural modeling (Gate-level)

® Use predefined or user-defined primitive gates.
* Dataflow modeling

® Use assighment statements (assign)
* Behavioral modeling

® Use procedural assignment statements (always)

| bl SUNY - New Paltz J

Elect. & Comp. Eng.

/Structural Verilog Description of Two-Bit h
Greater-Than Circuit
// Two-bit greater-than circuit: Verilog structural model £ 1
// See Figure 2-27 for logic diagram /2
module comparator_greater_than_structural(A, B, A _greater_than_B); f/ 3
input [1:0] a, B; // 4
output A_greater_than_B; ff 5
wire BO_n, Bl_n, and0O_out, andl_out, and2_out; f/ 6
not £l <9
inv0(BO_n, B[0]1), invl(Bl_n, B[1]): // 8
and lf 9
and0 (and0O_out, A[l]l, Bl_n), // 10
andl (andl_out, A[1], A[0], BO_n), /7 11
and2 (and2_out, A[0], Bl_n, BO_n); Ff 12
or o I}
or0 (A_greater_than_B, andO_out, andl_out, and2_out): // 14
endmodule 4T i
Al
Bl— >
g(()}— 1] A_greater_than B

Elect. & Comp. Eng.

| bl SUNY - New Paltz il s Ak J
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Dissection

¢ Module and Port declarations
® Verilog-2001 syntax
module AOI (input A, B, C, D, output F);
® Verilog-1995 syntax
module AOI (A, B, C, D, F);
inputA, B, C, D;
output F;

® Wires: Continuous assignment to an internal signal

A\ SUNY - New Paltz )

¥ Elect. & Comp. Eng.

A Simple Dataflow Design

/ / Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);
wire F; // the default
wire AB, CD, O; // necess
assign AB = A & B;

’ Continuous Assignments

assign CD = C & D; AB
assign O = AB | CD B — L O -
assign F = ~O; C—
I
endmodule D —o CD
H // end of Verilog code
P oo & com e )

Introduction to Verilog
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A Simple Dataflow Design

O 0Ow>»

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for AND, ‘|’ for OR, ‘" for XOR “*~’ for XNOR, ‘&~’ for NAND

| bl SUNY - New Paltz

Elect. & Comp. Eng.

/

a

4

Dataflow Verilog Description of Two-Bit

Greater-Than Comparator

// Two-bit greater-than circuit: Dataflow model

// See Figure 2-27 for logic diagram

module comparator_greater_than_dataflow(A, B, A_greater_than_B);
input [1:0] A, B;

ocutput

A_greater_than_B;

wire Bl_n, BO_n, andO_out, andl_out, and2_out;

assign Bl_n = ~B[1];

assign BO_n = ~B[0];

assign and0_out = A[l] & Bl_n;

assign andl_out = A[l] & A[0] & BO_n;

assign and2_out = A[0] & Bl_n & BO_n;

assign A_greater_than_B = and0_out | andl_out | and2_out;
endmodule

Capynget €018 Pesran Fducation, I Rights Rrserved

SUNY — New Paltz
Elect. & Comp. Eng.
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Conditional Dataflow Verilog Description

of Two-Bit Greater-Than Circuit

=

// Two-bit greater-than circuit: Conditional model f11
// See Figure 2-27 for logic diagram fl 2
module comparator_greater_than_conditiconal2(A, B, A_greater_than_B); f/ 3
input [1:0] A, B; /4
output A_greater_than_B; /5
assign A_greater_than_B = (A > B)? 1'bl : f/ 6
1'b0; |
endmodule /8
l )lSUNYNewPaltZ
Elect. & Comp. Eng. j
Verilog Description of Two-Bit Greater-
Than Circuit
// Two-bit greater-than circuit: Behavioral model // 1
// See Figure 2-27 for logic diagram /2
module comparator_greater_than_behavioral(A, B, A_greater_than_B); il 3
input [1:0] A, B; /4
ocutput A_greater_than_B; fl 5
assign A_greater_than_ B = A > B; /] B
endmodule 7

Copynght ©I1E Pearsan Edecation, AN Rughas Restreed

l )l SUNY - New Paltz

Elect. & Comp. Eng.
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//

//
//
//

//

module MUX2 (input SEL, A, B, output F);

A Design Hierarchy

Module Instances

e MUX_2 module contains references tq

each of the lower level modules

// Verilog code for 2-input multiplexer
module INV (input A, output F); // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

\

Verilog code for 2-input multiplexer

2:1 multiplexer

wires SELB and FB are implicit

Module instances. ..

F=(SEL)".A + (SEL).B
SELB = (SELY’
F=(SELB).A + (SEL).B

1. Invert SEL and get SELB
2. UseAOIand get F’

3. Invert F’ and get F

INV G1 (SEL, SELB);
AOI G2 (SELB, A, SEL, B, FB);
INV G3 (.A(FB), .F(F));

// Named mapping

endmodule

end of Verilog code

| lSUI\'YI\'ew Paltz
Elect. & Comp. Eng.

Pe—

a

Another Example

input A, B;

output DO,D1,D2,D3;
assign DO = ~A&~B;
assign DI = ~A&B;
assign D2 = A&~B;
assign D3 = A&B;
endmodule

| bl SUNY - New Paltz

Elect. & Comp. Eng.

module decoder (A,B, DO,D1,D2,D3);

a —>
& —>o

7

Figure 6. Logic diagram of 2-to-4 decode

T

Do

D1

D2

D3

r

Introduction to Verilog
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( Hierarchical representation of Adder

module fulladder (4,B,CIN, S,COUT);
input 4,B,CIN; o
output §,COUT; A D ))7 s
assign S = A" B CIN; ’ 7

assign COUT = (A & B) | (A & CIN) 1
| (B &CIN);

endmodule —D@;

Logic diagram of fulladder

| &I SUNY - New Paltz

Elect. & Comp. Eng.

coul

Vs
module four_bit_adder (CIN, X3,X2,X1,X0,Y3,Y2,Y1,Y0, S3,5S2,51,50,COUT);
input  CIN, X3, X2, X1, X0,Y3,Y2,Y1,Y0;

output S3,S2, 81, S0, COUT;

wire C1,C2,C3;

fulladder FAO (X0,Y0, CIN, SO, C1);

fulladder FA1 (X1,Y1, C1, S1, C2),

fulladder FA2 (X2,Y2, C2,S2, C3);

fulladder FA3 (X3,Y3, C3, S3, COUT);

endmodule Y3 X2 v2 X1 Y1 X0 Y0

N

cout c3 c2

«— FA3 e—1 A2 le—0of, Fal le— FAD —

| I

53 s2 s1 S0
B Figure9. Four bit Full Adder
SUNY — New Paltz

Elect. & Comp. Eng.

\

Introduction to Verilog
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module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire [4:0] C;

full _adder FAO (B(0), A(0), C(0), S(0), C(1));
full _adder FAT (B(1),A(1), C(1), S(1), C(2));
full _adder FA2 (B(2),A(2), C(2), S(2), C(3));
full _adder FA3 (B(3),A(3), C(3), S(3), C(4));
assign C(0) = CIN;

X3 v3 x2 v2 x1 ¥l X0 Y0
assign COUT = C(4); | l | ‘ | | ‘ ’
endmodule cour c3 c2 cL an
| FA3 e | Fa2z B EAL le—1] Fa0 —
| | !
A\ SUNY — New Paltz 53 s2
A 51
¥ Elect. & Comp. Eng. /

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)
® QGate instantiations
and (z, x, y), or (c, a, b), xor (S, x, y), etc.
® Continuous assighments
assignZ=x&y;c=a|b;S=x"y
2. Procedural statements (sequential)
(executed in the order written in the code)
* always (@ - executed continuously when the event is active

¢ Initial - executed only once (used in simulation)

e if then else statements

' 'l SUNY — New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021
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Behavioral Description

module Add_half ( sum, c_out, a, b );

input a,b; 5
output sum, c_out;

reg sum, c_out; b
always @ (aorb)

begin
sum=a”b;
c out=a&hb;

end

ndmodule

vent contro
expression or
sensitivity list

Procedure
assignment
statements

Must be of the
‘reg’ type

SUNY — New Paltz
Elect. & Comp. Eng.

F=s?wl:w2;
b SUNY — New Paltz endmodule

Conditional Statement

¢ Conditional_expression ? true_expression : false expression;

Example:
® AssignA = (B<C) 7 (D+5) : (D+2);
if B is less than C, the value of A will be D + 5, or else A will have the
value D + 2.

* An if-else statement is a procedural statement.

/ /Behavioral specification

-~
always @ (w0, w1,s)

module mux2tol (w0, wl, s, F); if s==1)F = wl;
input wo,w1,s; else F = wO0;
output F; endmodule

reg F;

always @ (w0, w1,s)

Elect. & Comp. Eng.

sensitivity list

Introduction to Verilog

9/23/2021
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output F;
reg F;

else F = w3;

endmodule

| I SUNY - New Paltz

¥ Elect. & Comp. Eng.

Mux 4-to-1

module mux4tol (w0, wi,w2, w3, S, F);

input wO,wl,w2,w3,[1:0] S;

always @ (wO,w1,w2,w3,S)
if (S==0) F = w0;

else if (S==1) F = wl;

else if (S==2) F = w2;

Verilog Operator

> >= < <=

&& ||

| I SUNY - New Paltz

¥ Elect. & Comp. Eng.

Name

greater than greater
than or equal to less
than less than or equal

to
case equality case

inequality

bit-wise AND bit-wise
XOR bit-wise OR

logical AND logical
OR

Functional Group

relational

equality

bit-wise bit-wise

logical

=

Introduction to Verilog

9/23/2021
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Another Example

/ /Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);
input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

A\ SUNY - New Paltz

¥ Elect. & Comp. Eng.

Dataflow Modeling

/ /Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);
input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

\ concatenation ‘ ‘ Binary addition ‘
A\ SUNY — New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog
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Design of an ALU using Case
Statement

0 Clear

1 B-A

2 A-B

3 A+B

4 A XOR B

5 A ORB

6 A AND B

7 Settoall 1’s

| bl SUNY — New Paltz

Elect. & Comp. Eng.

// 74381 ALU

module alu(s, A, B, F);

input [2:0] s;

input [3:0] A, B;

output [3:0] F

reg [3:0] F;
always (@(s or A or B)
case (s)

0: F = 4'50000;
I:F=B-A;
2:F=A-B;
3:F=A+B;
4:F=A"B;
5:F=A | B;
6: F=A &B;
7:F=4b1111;
endcase
endmodule

\—f—'\f—-—-’:‘/\u—J\/w—-—/V‘"—‘

// 74381 ALU

module VALU(s, A, B, F);
input [2:0] s;

input [3:0] A, B;
output [3:0] F;

reg [3:0] F;

always @(s or A or B)
case (s)

0: F =4'b0000;
:F=B-A;
:F=A-B;
:F=A+B;
F=A"B;
:F=A|B;
:F=A&B;

:F=4blll11;
endcase
b SUNY - New Paltz endmodule

Elect. & Comp. Eng.

A ANG =0 A-B b N Th e N5

Eaul ';,‘(\AG

<#> J

Introduction to Verilog
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Golden Rules

e Golden Rule 1:

® To synthesize combinational logic using an always block, all

inputs to the desz'gn must appear in the sensitivity list.

® Golden Rule 2:

® To synthesize combinational logic using an always block, all

variables must be assigned under all conditions.

SUNY — New Paltz

| 68 + 0. -~ ~
» Elect. & Comp. Eng.

Golden

reg f;
always @ (sel, a, b)
begin :
if (sel ==1)
f=a;
else
f=";
end

* Proper as intended

' '\l SUNY - New Paltz

» Elect. & Comp. Eng.

Rules

Reg f;
always @ (sel, a, b)
begin f=b;
if (sel ==1)
f=a;
end

» Setting variables
to default values
at the start of the
always block

* OK as well!

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f=a;
end

lat ch
u f

* What if sel = 0?

» Keep the current value
* Undesired functionality

e Unintended latch
* Need to include else

Introduction to Verilog

9/23/2021
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4 Blocking vs. Nonblocking Assignments

" Verilog supports two types of assiscnments within always
blocksg, wil‘:t)IFl) subtly dift)gr)ent beha\%ors. 4

" Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

beagin
x =a | b; 1. Evaluate a | b, assign result to x
y=a”b”c; 2. Evaluate a*b”c, assign result to y
%j =b & ~c; 3. Evaluate b&(~c), assign result to z
en

*  Nonblocking assignment: all assignments deferred until all right-hand
sides haveéi)een evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X.<='a | b; 1. Evaluate a | b but defer assignment of x
y.<=a”b~c; 2. Evaluate a*b”c but defer assignment of y
zZ <=b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

H * Sometimes, as above, both produce the same result. Sometimes, not!

A\ SUNY — New Paltz D

¥ Elect. & Comp. Eng.

( Blocking vs. Nonblocking Assignments

> The = token represents a blocking blocking procedural assignment
v" Evaluated and assigned in a single step
v’ Execution flow within the procedure is blocked until the

assignment is completed

» The <= token represents a non-blocking assignment
v" Evaluated and assigned in two steps:
1. The right hand side is evaluated immediately
2. The assignment to the left-hand side is postponed until other

evaluations in the current time step are completed

//swap bytes in word //swap bytes in word
always (@(posedge clk) always (@(posedge clk)
begin begin
word[15:8] = word][ 7:0]; word[15:8] <= word[ 7:0];
word[ 7:0] = word[15:8]; word[ 7:0] <= word[15:8];
A\ SUNY - New Paitz <24 ity
P Elect. & Comp. Eng. J
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Why two ways of assigning values?

Conceptual need for two kinds of assignment (in always blocks):

Assignment is postponed until
all r.h.s. evaluations are done

Blocking: a-=-> X —aé&b
Evaluation and assignment ’7_ _
are immediate b =a Y = X ! (63
Non-Blocking: <=

<=

When to use:

( only in always blocks! )

Sequential
Circuits

Combinational
Circuits

| ”ISUNYNM\PMU

¥ Elect. & Comp. Eng.

~

Assignment Styles for Sequential

Logic

Flip-Flop Based
Digital Delay

Line

In—

D Q—|D Q

q1

\4

q2

—~—D Qf— out

A\

D>
clk r_

-

-

Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);

input in, clk;

output out;

reg gql, g2, out;
always @ (posedge clk)

begin
ql <= in;
g2 <= ql;
out <= (g2;
end

endmodule

| ”ISUNYNM\PMU

¥ Elect. & Comp. Eng.

module blocking(in, clk, out);

input in, clk;

output

reg ql,

out;
q2, out;

@ (posedge clk)

in;

endmodule

=

Introduction to Verilog

9/23/2021
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4

A\ SUNY — New Paltz
» Elect. & Comp. Eng.

Use Nonblocking for Sequential
Logic

always @ (posedge clk) always @ (posedge clk)

begin Yegin
ql <= in; al = in;
g2 <= q1; q2 = ql;
out <= g2; out = g2;
end end

“At each rising clock edge, g1, g2, and
out simultaneously receive the old values
ofin, g1, and g2.”

“At each rising <'uck edge, gl = in.
After that, 2 - gq. = in; After that,

out=q2 = r.=in; Fi ally out = in.”

q1 q2

) ql g2
in—D QF—~—|D QD Qf—out n-

D QF——— out

Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

+ Guideline: use nonblocking assignments for
sequential always blocks

Va

A\ SUNY — New Paltz
» Elect. & Comp. Eng.

Use Blocking for Combinational N

Logic

Bl ocking Behavior abc xy always @ (a or b or c)
(Given) Initial Condition 110 11 begin
achanges; ) 010 11 X = a & b; —— — —
always block triggered y = X I c:
X = a &b; 010 01 end
y=x]c; 010 00

Nunblocking Behavior abc xy | Deferred
(Given) Initial Condition | 110 11

. always @ (a or b or ¢)
achanges; i

always block triggered 01011 negin

X <= a & b; 010 11 | x<=0 ).<.<=a&b;

y <=xlc; 010 11 | x<=0, y<=1  Y-7 ¥ 1.6

end

Assignment completion 010 01
Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

* Guideline: use blocking assignments for
combinational always blocks

Introduction to Verilog

9/23/2021
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Propagation Delay for an Inverter

IN

fpHL IpLH

IN <D& OUT OUT

Ipg = max (fpye. fpLy)

gt C2016 Pearson Educetion, A% Rights Reserved

| i\\sl SUNY — New Paltz

W Elect. & Comp. Eng.

vransitions have stopped! j
| i

Single-clock Synchronous Circuits

We'll use Flip Flops and Registers - groups of FFs sharing a clock input - ina
highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

ﬂo combinational cycles \

* Single clock signal shared

among all clocked devices Q)

¢ Only care about value of
combinational circuits just
before rising edge of clock

* Period greater than every O )
combinational delay N\

¢ Change saved state after
noise- inducing logic

AV SUNY — New Paltz
W Elect. & Comp. Eng.
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Asynchronous Inputs in Sequential Systems

What about external signals?

T |, Can't guarantee
o — |
_TL_O Sequential System setup and hold
times will be met!
Clock - ]
When an asynchronous signal causes a setup/hold
violation. ..
| u m
D_J | /
Clock _ [/ \_ [/ \  _ [ U/ I\
Transition is missed on Transition is caught on Output is metastable
first clock cycle, but first clock cycle. for an indeterminate
caught on next clock amount of time.
cycle.

Q: Which cases are problematic?

AY SUNY - New Paltz

P

Elect. & Comp. Eng.

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

Clocked
Synchronous
System

e I Sequential System
,__° o— — |
\\
= N Y
Clock ;

This prevents the possibility of I and IT occurring in different places
in the circuit, but what about metastability?

' l SUNY — New Paltz

P

Elect. & Comp. Eng.
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Handling Metastability

Preventing metastability turns out to be an impossible problem

High gain of digital devices makes it likely that metastable
conditions will resolve themselves quickly

Solution to metastability: allow time for signals to stabilize

Can be Very unlikely to be Extremely unlikely to
metastable metastable for >1 be metastable for >2
right after clock cycle clock cycle
sampling \ \ /
T Complicated
_|__° o——— Sequential Logic
= System

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, ..)
In above, a pair of synchronization registers is sufficient

' l SUNY — New Paltz

¥ Elect. & Comp. Eng.

Finite State Machines (FSM)

® State diagrams are representations of Finite State Machines (FSM)

* Mealy FSM : Ot o1 @

o
o m
10 an 10

® can have temporarily unstable output s w6

® Moore FSM
® Output depends only on state

® Output depends on input and state

® Output is not synchronized with clock

0
' l SUNY — New Paltz

¥ Elect. & Comp. Eng.
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Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

At each clock edge, combinational logic computes outputs and

next state as a function of inputs and present state

CLK

SUNY — New Paltz
Elect. & Comp. Eng.

inputs =) oOUtputs
+ +
present next
state state

Two Types of FSMs

direct combinational path!

inputs
Xog+eXn

SUNY — New Paltz
Elect. & Comp. Eng.

Moore and Mealy FSMs : different output generation

* Moore FSM:
inputs outputs
—
Xgee:Xn Yk =fi(S)
present state S
* Mealy FSM:

outputs

| Y= fi(S, Xo.-X)

Introduction to Verilog
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Example: Light Switch

- State transition diagram

BUTTON-=0

PS NS
Q Butto Q&D

Button M}
O O Light
1 0 i
1 1
0 1

Light

—_—_—0 O
— o — OB

D=QB+QB
Light = Q

»-D :

BUTTON - - 1
CLK >

Note: B = Button

y3)
A 4

LIGHT

¥ Elect. & Comp. Eng.

CLK >
' 'l SUNY — New Paltz Register

Example: Light Switch

+ State transition diagram

BUTTON=1
BUTTON-=0
BUTTON=1

* Logic diagram
9 9 Combinational logic

-3

- 1

BUTTON b Qq——

¥ Elect. & Comp. Eng.

BUTTON=0

LIGHT
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end
endmodule

output light; reg light;
always (@ (posedge clk) begin
it (button) light <= ~light;

/Clocked circuit for on/off button

module onoff(clk,button, light);
input clk,button;

BUTTON

CLK

LIGHT

D Q
>

A 4

CLK

A

SINGLE GLOBAL CLOCK
i\\s SUNY — New Paltz

W Elect. & Comp. Eng.

LOAD-ENABLED REGISTER

end
endmodule

output light; reg light;
always (@ (posedge clk) begin
if (button) light <= ~light;

module onoff(clk,button,light);
input clk,button;

Clocked circuit for on/off button

Does this work
with a 1Mhz

e \ .
4

BUTTON
CLK
<

CLK

LIGHT

D Q

>

SINGLE GLOBAL CLOCK
i\\s SUNY — New Paltz

W Elect. & Comp. Eng.

LOAD-ENABLED REGISTER
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' ﬁ!SUNYNmVPMu

4 Example: 4-bit Counter

* Logic diagram

* Verilog

4 4
+1 > » count
# 4-bit counter CIk
module counter(clk, count);

input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+l;
End
endmodule

W Elect. & Comp. Eng.

" Example: 4-bit Counter

* Logic diagram

* Verilog

@ a » count
erTIb

che

# 4-bit counter with enable
modulle counter(clk,enb,count);
input clk,enb;

output [3:0] count; Could T use the following instead?
reg [3:0] count; if (enb) count <= count+1;
always @ (posedge clk) begin »

count <= enb ? count+l : count;

end
endmodule

| i\\sl SUNY — New Paltz

W Elect. & Comp. Eng.
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4

Example: 4-bit Counter

* Logic di
ogic diagram 0 4 4

@ » count

" Verilog enb c[r cIk
# 4-bit counter with enable and synchronous clear

modulle counter(clk,enb,clr,count);
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @(posedge clk) begin
count <= clr ? 4°b0 : (enb ? count+l : count);
end
endmodule

SUNY — New Paltz

P Elect. & Comp. Eng.
’

n

"

bit Shift Register with Reset

module srg_4 r_v (CLK, RESET, SI, Q,S0);
input CLK, RESET, SI;
output [3:0] Q;
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET) begin
it (RESET)
Q <= 47b0000;
else
Q <= {Q[2:0]., SI};
end
endmodule

SUNY — New Paltz

P Elect. & Comp. Eng.
’
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—
4-bit Binary Counter with Reset

modulle count_4 r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;
output CO;
reg [3:0] Q;
assign CO = (count == 4"b1111 && EN == 1°b1) ? 1 : O;
always@(posedge CLK or posedge RESET)
begin
it (RESET)
Q <= 4"b0000;
else it (EN)
Q <= Q + 47b0001;
end
endmodule

A\ SUNY - New Paltz

¥ Elect. & Comp. Eng.

Sequence Detector

« Circuit specification:
* Design a circuit that outputs a 1 when three consecutive 1’s have been
received as input and 0 otherwise. 0

* FSM type 0
* Moore or Mealy FSM? , 1', e

. i 1
» Both possible S ) +(5,/0
¢ » Chose Moore to simplify diagram 3

« State diagram:
e » State SO: zero 1s detected 0
e » State S1: one 1 detected A &
o » State S2: two 1s detected e

1
e » State S3: three 1s detected = 1 @

' KISUNYNemeu

¥ Elect. & Comp. Eng.
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Ve
Sequence Detector: Verilog (Moore FSM)

module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection
input x, clk;
output y;
reg [1:0] state;
parameter S0=2"b00, S1=2"b01, S2=2"b10, S3=2"bll;
// Define the sequential block 0
always @(posedge clk)
case (state) £\ 0
S0: if (x) state <= S1; [ |
else state <= SO;

S1: if (x) state <= S2;
else state <= SO;
S2: if (x) state <= S3;
else state <= SO; )
S3: if (x) state <= S3; g
else state <= SO; 5

endcase
// Define output during S3
assign y = (state == S3);

endmodule

' &l SUNY — New Paltz I

Elect. & Comp. Eng.

\

Ve
Sequence Detector: Verilog (Mealy FSM)

module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection
input x, clk;
output y; regy;
parameter S0=2"b00, S1=2"b01, S2=2"b10, S3=2"bl1l;
// Next state and output combinational logic 0/0
// Use blocking assignments "'=" 0/0
always @(x or pstate)
case (pstate)
SO0: if (xX) begin nstate = S1; y = 0; end
else begin nstate = SO; y = 0; end
S1: if (X) begin nstate = S2; y = 0; end
else begin nstate = SO; y = 0; end
S2: if (xX) begin nstate = S3; y = 1; end
else begin nstate = SO; y = 0; end
S3: if (X) begin nstate = S3; y = 1; end
else begin nstate = SO; y = 0; end
endcase 1
// Sequential logic, use nonblocking assignments "<="
always @(posedge clk)
pstate <= nstate;
endmodule
E SUNY — New Paltz

Elect. & Comp. Eng.
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Verilog Name Functional Verilog Name Functional
Operator Group Operator Group
[ bit-select or part- + binary plus arithmetic
select - binary minus arithmetic
O) parenthesis << shift left shift
! logical negation logical >> shift right shift
~ negation bit-wise > greater than relational
& reduction AND reduction >= greater than or equal relational
| reduction OR reduction < to relational
~& reduction NAND reduction <= less than relational
~ reduction NOR reduction less than or equal to
" reduction XOR reduction == case equality equality
~" or *~ reduction XNOR reduction 1= case inequality equality
+ unary (sign) plus arithmetic & bit-wise AND bit-wise
- unary (sign) minus arithmetic A bit-wise XOR bit-wise
{} concatenation concatenation | bit-wise OR bit-wise
{{}} replication replication && logical AND logical
* multiply arithmetic | ] logical OR logical
/ divide arithmetic 7 conditional conditional
modulus arithmetic

/

Testing a Verilog Model

® A model has to be tested and validated before it can be

successfully used.

® A test bench is a piece of Verilog code that can provide input

combinations to test aVerilog model for the system under

test.

® Test benches are frequently used during simulation to

provide sequences of inputs to the circuit or Verilog model

under test.
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Stimulus module

Design module

module testcircuit

reg TA, TB; >

wire TC, |-

circuit cr (TA, TB, TC);

module circuit (A, B, C):
input A, B;

output C:

Fig. 4-33 Stimulus and Design Modules Interaction

| l SUNY — New Paltz
Elect. & Comp. Eng.

a

Testbench for the Structural Model of the
Two-Bit Greater-Than Comparator

reg [1:0] A, B;
wire struct_out;

initial

| ;l SUNY - New Paltz

Elect. & Comp. Eng.

comparator_greater_than_structural Ul(a,

Capyrght EI016 Prarscn Tducation, AT Rights Reserved

// Testbench for Verilog two-bit greater-than comparator
module comparator_testbench_wverilog();

B, struct_out);

I
I/
!
L
/"
i
I
!
s
I/
/
rf
!
s
/

(= JEE I NS T R

e el e i e e
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\
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Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)

1
A y wi i ; !
sl Gl D ; D inputA, B, C;
1

output D, E;

) i - | wire wl;
&9 D‘ : R and # (30) G1 (w1, A, B);
: not #10 G2 (E, C);

Table 3.5
Output of Gates after Delay orf(%;) 1G3 (I ko B
enamodule
Input Output
Time Units

(ns) ABC EwlD . , e .
Initial — 000 1 01
Change - 111 L o1

10 111 0 o1 |,

20 111 0 01

30 111 010"

40 111 0 10

50 111 0 11

L ‘SUI\Y New Paltz
b Elect. & Comp. Eng. J

Testing a Verilog Model (continued)

e Test bench for testing a 4-bit binary adder:

Addend P
Augend B
Test Curry in c 4Lt
hench Sam i adder
-
L
Carry on L,

| bl SUNY — New Paltz

Elect. & Comp. Eng. J
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module t_circuit; e
regt_A,t_B: =
wiret_C;
parameter stop_time = 1000 ;

Y
N /"_"‘\ S

[ \
circuit M ({t_C) t_A,t_B ):
(\ y e

b

// Stimulus generators for

/[l t_A and t_B go here
initial # stop_time $finish;

endmodule

(" Interaction between stimulus
and design modules

module circuit ((CJA, l§)

"

“| input A, B;

output (CH

// Description goes here
endmodule

| bl SUNY — New Paltz

Elect. & Comp. Eng.

Arithmetic in Verilog

module Arithmetic (A, B,Y1,Y2,Y3,Y4,Y5);

input [2:0] A, B;

output [3:0]Y1;

output [4:0]Y3;

output [2:0]Y2,Y4,Y5;

reg [3:0]Y1;

reg [4:0]Y3;

reg [2:0]Y2,Y4,Y5;

always (@(A or B)

begin
Y1=A+B,;//addition
Y2=A-B;//subtraction
Y3=A*B;//multiplication
Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end
endmodule
b SUNY — New Paltz

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

34



EGC 455
Design and Verification of System on Chip

module Equality (A, B,Y1,Y2,Y3);
input [2:0] A, B;
output Y1,Y2;
output [2:0]Y3;
reg Y1,Y2;
reg [2:0]Y3;
always @(A or B)
begin

if (A==B)//parenthesis needed
Y3=A;
else

Y3=B;

5

end
endmodule
E\& SUNY — New Paltz

P Elect. & Comp. Eng.
’

va
Equality and inequality Operations in Verilog

Y1=A==B;//Y1=1if A equivalent to B
Y2=A!=B;//Y2=1 if A not equivalent to B

va
Logical Operations in Verilog

module Logical (A, B, C, D, E, EY);
input [2:0]A, B, C, D, E, F;

output Y;
reg Y;
always @(A or Bor C or D or E or F)
begin
if (A==B) & ((C>D) | | (E<F)))
Y=1;
else
Y=0;
end
endmodule
Hg\& SUNY — New Paltz
WP Elect. & Comp. Eng.
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(ot o . .
Bit-wise Operations in Verilog
module Bitwise (A, B,Y);
input [6:0] A;
input [5:0] B;
output [6:0]Y;
reg [6:0]Y;
always (@(A or B)
begin
Y[0]=A[0]&B[0]; / /binary AND
Y[1]=A[1]|B[1]; / /binary OR
Y[2]=!(A[2]&B[2]); / /negated AND
Y[3I=!(A[3]| B[3]); / /negated OR
Y[4]=A[4]"B[4]; / /binary XOR
Y[5]=A[5]~"B[5]; / /binary XNOR

Y[6]=!A[6]; / /unary negation

end
\ endmodule
-\\3 SUNY - New Paltz

|
» Elect. & Comp. Eng. J

. Concatenation and Replication in Verilog

® The concatenation operator "{ , }" combines (concatenates) the bits
of two or more data objects. The objects may be scalar (single bit) or
vectored (multiple bit). Multiple concatenations may be performed
with a constant prefix and is known as replication.
module Concatenation (A, B,Y);
input [2:0] A, B;
output [14:0]Y;
parameter C=3'b011;
reg [14:0]Y;
always @(A or B)
begin
Y={A, B, {2{C}}, 3b110};

end

module
A\SUNY — New Paltz
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—
Shift Operations in Verilog

module Shift (A,Y1,Y2);

input [7:0] A;

output [7:0]Y1,Y2;

parameter B=3; reg [7:0]Y1,Y2;

always @(A)

begin
Y1=A<<B; //logical shift left
Y2=A>>B; //logical shift right

end

endmodule

| I?\X}I SUNY — New Paltz
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va
Conditional Operations in Verilog

module Conditional (Time,Y);
input [2:0] Time;
output [2:0]Y;
reg [2:0]Y;
parameter Zero =3b'000;
parameter TimeOut = 3b'110;

always @(Time)
begin
Y=(Time!=TimeOut) ?Time +1 : Zero;
end
endmodule

| I?\X}I SUNY — New Paltz
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—
Reduction Operations in Verilog

module Reduction (A,Y1,Y2,Y3,Y4,Y5,Y6);

input [3:0]A;

output Y1,Y2,Y3,Y4,Y5,Y6;

reg Y1,Y2,Y3,Y4,Y5,Y6;

always @(A)

begin
Y1=&A; //reduction AND
Y2=|A; //reduction OR
Y3=~&A; //reduction NAND
Y4=~|A; //reduction NOR
Y5="A; //reduction XOR
Y6=~"A; //reduction XNOR

end
endmodule
[\ .
| |-\\3I SUNY — New Paltz
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