EGC 455

Design and Verification of System on Chip

EGC 455
Design & Verification of SOC

Design Using Verilog - |

4

New Paltz

STATE UNIVERSITY OF NEW YORK

Baback lzadi
Division of Engineering Programs
bai@engr.newpaltz.edu

4

Computer-Aided Design (CAD)

® Steps in modern digital system design:

| Requirements |

¥

| Design specifications |

|

Design formulation

¥

Design entry
VHIH., Verilog, schemstic captune

v

Logic synthesis

i

Post synthesis sirmulaton

v

| Simufation |

Mapping, placement, routing

TPGA programming unil

SUNY — New Paltz [ascmss |

| Configured FPGAs |

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

Design and Verification of System on Chip

9/23/2021

va
CAD (continued)

¢ Target technologies that are available:

b

Field
programmahle pate
arrays (FPGAs)

Cost Desipgn-Time Performance

PALs, PLAs, PLDs

Togic elements

Mask A
programemable gate
arrays (MPGAs)

Density and degree of costomization

specific integrated circuits (ASICs).
A\ SUNY — New Paltz

» Elect. & Comp. Eng.

® Most common: field programmable gate arrays (FPGAs) and application-

(HDLs)

structure of digital systems.

' i'i‘\l SUNY - New Paltz

» Elect. & Comp. Eng.

Hardware Description Languages

® HDLs can describe a digital system at several different

levels—behavioral, data flow, and structural.
® HDLs lead naturally to a top-down design methodology.
* Two popular HDLs—VHDL and Verilog.
® Verilog is a HDL used to describe the behavior and / or

Introduction to Verilog

EGC 455
Design and Verification of System on Chip

/
Compilation, Simulation, and Synthesis of
Verilog Code

¢ Simulation and synthesis process:

VHIN. Simuluwtor
libraries commands
Intermediaie l
" cod .
w‘ﬂzl‘_"‘ Compiler ' - ¥ Simulator Simulator
o aolpul
Synthesizer ¥ Tmplementer —# Hardware

¢ A netlist is a list of required components and their interconnections.

A\ SUNY - New Paltz

| 68 + 0. -~ ~
» Elect. & Comp. Eng.

\

/

Basic Verilog

Lexical Convention

Lexical convention are close to C++.

¢ Comment
® // to the end of the line.

® /* to */ across several lines

Keywords are lower case letter & it is case sensitive
VERILOG uses 4 valued logic: 0, 1, x and z
Comments: // Verilog code for AND-OR-INVERT gate

module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

<functionality_of_module>

\ endmodule
AYSUNY — New Paltz

» Elect. & Comp. Eng. J

Introduction to Verilog

9/23/2021

EGC 455

Design and Verification of System on Chip

A\ SUNY - New Paltz

Behavioral and Structural Verilog

® Any circuit or device can be represented in multiple forms of

abstraction.

NOT AND

el
@ | e natdmdm |

* Example:

CMOS 7400
1

3 T
® " 551 Gates
1
8

A .
(¢} C Logic
R 1

@ « Transistor

A
v ‘

| 68 + 0. -~ ~
» Elect. & Comp. Eng.

' '\l SUNY - New Paltz

Behavioral and Structural Verilog
(continued)
e 3 Models:

e Structural:
Specifies more details.

Components used and the structure of the interconnection between the

components are clearly specified.

At a low level of abstraction.
® Data Flow (Register Transfer Language):

Data path and control signals are specified.

System is described in terms of the data transfer between registers.
® Behavioral:

Specifies only the behavior at a higher level of abstraction.

Does not imply any particular structure or technology.

» Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

Design and Verification of System on Chip

Taste of Verilog

Module name

input a, b;
output
wire c_out_bar;

\

xor (sum, a, b);

// xor G1(sum, a, bﬂ
nand (c_out_bar, a, b);

not (c_out, c_out_bar);

endmodule

Verilog keywords

A SUNY — New Paltz

¥ Elect. & Comp. Eng.

Modlule ports
module Add_half (sum, c_out, a, b);

Dedlaration of port
Sum, c_out; . poupe P2

Dedlaration of internal
signal

Instantiation of primitive
ates

G1

a__)Di
b sum
c_out_bqr

c_out

Lexical Convention
- Numbers are specified in the

traditional form or below .

- Size: contains decimal digitals
that specify the size of the

. Base format: is the single

the following characters

b(binary),d(decimal),o(octal), h(hex).

<size><base format><number> |.

constant in the number of bits. |

character ¢ followed by one of |

Example :

347 -- decimal number
4’b101 -- 4- bit 0101,
2’012 -- 2-bit octal number
5"h87f7 -- 5-digit 87F7,,
2'd83 -- 2-digit decimal
String in double quotes

“ this is a introduction”

- Number: legal digital.

| | SUNY - New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

EGC 455
Design and Verification of System on Chip

Three Modeling Styles in Verilog

® Structural modeling (Gate-level)

® Use predefined or user-defined primitive gates.
* Dataflow modeling

® Use assighment statements (assign)
* Behavioral modeling

® Use procedural assignment statements (always)

| bl SUNY - New Paltz J

Elect. & Comp. Eng.

/Structural Verilog Description of Two-Bit h
Greater-Than Circuit
// Two-bit greater-than circuit: Verilog structural model £ 1
// See Figure 2-27 for logic diagram /2
module comparator_greater_than_structural(A, B, A _greater_than_B); f/ 3
input [1:0] a, B; // 4
output A_greater_than_B; ff 5
wire BO_n, Bl_n, and0O_out, andl_out, and2_out; f/ 6
not £l <9
inv0(BO_n, B[0]1), invl(Bl_n, B[1]): // 8
and lf 9
and0 (and0O_out, A[l]l, Bl_n), // 10
andl (andl_out, A[1], A[0], BO_n), /7 11
and2 (and2_out, A[0], Bl_n, BO_n); Ff 12
or o I}
or0 (A_greater_than_B, andO_out, andl_out, and2_out): // 14
endmodule 4T i
Al
Bl— >
g(()}— 1] A_greater_than B

Elect. & Comp. Eng.

| bl SUNY - New Paltz il s Ak J

Introduction to Verilog

9/23/2021

EGC 455 9/23/2021

Design and Verification of System on Chip

Dissection

¢ Module and Port declarations
® Verilog-2001 syntax
module AOI (input A, B, C, D, output F);
® Verilog-1995 syntax
module AOI (A, B, C, D, F);
inputA, B, C, D;
output F;

® Wires: Continuous assignment to an internal signal

A\ SUNY - New Paltz)

¥ Elect. & Comp. Eng.

A Simple Dataflow Design

/ / Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);
wire F; // the default
wire AB, CD, O; // necess
assign AB = A & B;

’ Continuous Assignments

assign CD = C & D; AB
assign O = AB | CD B — L O -
assign F = ~O; C—
I
endmodule D —o CD
H // end of Verilog code
P oo & com e)

Introduction to Verilog

EGC 455

Design and Verification of System on Chip

A Simple Dataflow Design

O 0Ow>»

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for AND, ‘|’ for OR, ‘" for XOR “*~’ for XNOR, ‘&~’ for NAND

| bl SUNY - New Paltz

Elect. & Comp. Eng.

/

a

4

Dataflow Verilog Description of Two-Bit

Greater-Than Comparator

// Two-bit greater-than circuit: Dataflow model

// See Figure 2-27 for logic diagram

module comparator_greater_than_dataflow(A, B, A_greater_than_B);
input [1:0] A, B;

ocutput

A_greater_than_B;

wire Bl_n, BO_n, andO_out, andl_out, and2_out;

assign Bl_n = ~B[1];

assign BO_n = ~B[0];

assign and0_out = A[l] & Bl_n;

assign andl_out = A[l] & A[0] & BO_n;

assign and2_out = A[0] & Bl_n & BO_n;

assign A_greater_than_B = and0_out | andl_out | and2_out;
endmodule

Capynget €018 Pesran Fducation, I Rights Rrserved

SUNY — New Paltz
Elect. & Comp. Eng.

= e
Wk - OoOWwm-1o W0 Wk

\

Introduction to Verilog

9/23/2021

EGC 455
Design and Verificat

ion of System on Chip

ra

Conditional Dataflow Verilog Description

of Two-Bit Greater-Than Circuit

=

// Two-bit greater-than circuit: Conditional model f11
// See Figure 2-27 for logic diagram fl 2
module comparator_greater_than_conditiconal2(A, B, A_greater_than_B); f/ 3
input [1:0] A, B; /4
output A_greater_than_B; /5
assign A_greater_than_B = (A > B)? 1'bl : f/ 6
1'b0; |
endmodule /8
l)lSUNYNewPaltZ
Elect. & Comp. Eng. j
Verilog Description of Two-Bit Greater-
Than Circuit
// Two-bit greater-than circuit: Behavioral model // 1
// See Figure 2-27 for logic diagram /2
module comparator_greater_than_behavioral(A, B, A_greater_than_B); il 3
input [1:0] A, B; /4
ocutput A_greater_than_B; fl 5
assign A_greater_than_ B = A > B; /] B
endmodule 7

Copynght ©I1E Pearsan Edecation, AN Rughas Restreed

l)l SUNY - New Paltz

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

EGC 455

Design and Verification of System on Chip

Va

//

//
//
//

//

module MUX2 (input SEL, A, B, output F);

A Design Hierarchy

Module Instances

e MUX_2 module contains references tq

each of the lower level modules

// Verilog code for 2-input multiplexer
module INV (input A, output F); // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

\

Verilog code for 2-input multiplexer

2:1 multiplexer

wires SELB and FB are implicit

Module instances. ..

F=(SEL)".A + (SEL).B
SELB = (SELY’
F=(SELB).A + (SEL).B

1. Invert SEL and get SELB
2. UseAOIand get F’

3. Invert F’ and get F

INV G1 (SEL, SELB);
AOI G2 (SELB, A, SEL, B, FB);
INV G3 (.A(FB), .F(F));

// Named mapping

endmodule

end of Verilog code

| lSUI\'YI\'ew Paltz
Elect. & Comp. Eng.

Pe—

a

Another Example

input A, B;

output DO,D1,D2,D3;
assign DO = ~A&~B;
assign DI = ~A&B;
assign D2 = A&~B;
assign D3 = A&B;
endmodule

| bl SUNY - New Paltz

Elect. & Comp. Eng.

module decoder (A,B, DO,D1,D2,D3);

a —>
& —>o

7

Figure 6. Logic diagram of 2-to-4 decode

T

Do

D1

D2

D3

r

Introduction to Verilog

9/23/2021

10

EGC 455

Design and Verification of System on Chip

(Hierarchical representation of Adder

module fulladder (4,B,CIN, S,COUT);
input 4,B,CIN; o
output §,COUT; A D))7 s
assign S = A" B CIN; ’ 7

assign COUT = (A & B) | (A & CIN) 1
| (B &CIN);

endmodule —D@;

Logic diagram of fulladder

| &I SUNY - New Paltz

Elect. & Comp. Eng.

coul

Vs
module four_bit_adder (CIN, X3,X2,X1,X0,Y3,Y2,Y1,Y0, S3,5S2,51,50,COUT);
input CIN, X3, X2, X1, X0,Y3,Y2,Y1,Y0;

output S3,S2, 81, S0, COUT;

wire C1,C2,C3;

fulladder FAO (X0,Y0, CIN, SO, C1);

fulladder FA1 (X1,Y1, C1, S1, C2),

fulladder FA2 (X2,Y2, C2,S2, C3);

fulladder FA3 (X3,Y3, C3, S3, COUT);

endmodule Y3 X2 v2 X1 Y1 X0 Y0

N

cout c3 c2

«— FA3 e—1 A2 le—0of, Fal le— FAD —

| I

53 s2 s1 S0
B Figure9. Four bit Full Adder
SUNY — New Paltz

Elect. & Comp. Eng.

\

Introduction to Verilog

9/23/2021

11

EGC 455

Design and Verification of System on Chip

Va

module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire [4:0] C;

full _adder FAO (B(0), A(0), C(0), S(0), C(1));
full _adder FAT (B(1),A(1), C(1), S(1), C(2));
full _adder FA2 (B(2),A(2), C(2), S(2), C(3));
full _adder FA3 (B(3),A(3), C(3), S(3), C(4));
assign C(0) = CIN;

X3 v3 x2 v2 x1 ¥l X0 Y0
assign COUT = C(4); | l | ‘ | | ‘ ’
endmodule cour c3 c2 cL an
| FA3 e | Fa2z B EAL le—1] Fa0 —
| | !
A\ SUNY — New Paltz 53 s2
A 51
¥ Elect. & Comp. Eng. /

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)
® QGate instantiations
and (z, x, y), or (c, a, b), xor (S, x, y), etc.
® Continuous assighments
assignZ=x&y;c=a|b;S=x"y
2. Procedural statements (sequential)
(executed in the order written in the code)
* always (@ - executed continuously when the event is active

¢ Initial - executed only once (used in simulation)

e if then else statements

' 'l SUNY — New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

12

EGC 455

Design and Verification of System on Chip

4

Behavioral Description

module Add_half (sum, c_out, a, b);

input a,b; 5
output sum, c_out;

reg sum, c_out; b
always @ (aorb)

begin
sum=a”b;
c out=a&hb;

end

ndmodule

vent contro
expression or
sensitivity list

Procedure
assignment
statements

Must be of the
‘reg’ type

SUNY — New Paltz
Elect. & Comp. Eng.

F=s?wl:w2;
b SUNY — New Paltz endmodule

Conditional Statement

¢ Conditional_expression ? true_expression : false expression;

Example:
® AssignA = (B<C) 7 (D+5) : (D+2);
if B is less than C, the value of A will be D + 5, or else A will have the
value D + 2.

* An if-else statement is a procedural statement.

/ /Behavioral specification

-~
always @ (w0, w1,s)

module mux2tol (w0, wl, s, F); if s==1)F = wl;
input wo,w1,s; else F = wO0;
output F; endmodule

reg F;

always @ (w0, w1,s)

Elect. & Comp. Eng.

sensitivity list

Introduction to Verilog

9/23/2021

13

EGC 455

Design and Verification of System on Chip

output F;
reg F;

else F = w3;

endmodule

| I SUNY - New Paltz

¥ Elect. & Comp. Eng.

Mux 4-to-1

module mux4tol (w0, wi,w2, w3, S, F);

input wO,wl,w2,w3,[1:0] S;

always @ (wO,w1,w2,w3,S)
if (S==0) F = w0;

else if (S==1) F = wl;

else if (S==2) F = w2;

Verilog Operator

> >= < <=

&& ||

| I SUNY - New Paltz

¥ Elect. & Comp. Eng.

Name

greater than greater
than or equal to less
than less than or equal

to
case equality case

inequality

bit-wise AND bit-wise
XOR bit-wise OR

logical AND logical
OR

Functional Group

relational

equality

bit-wise bit-wise

logical

=

Introduction to Verilog

9/23/2021

14

EGC 455

Design and Verification of System on Chip

9/23/2021

Another Example

/ /Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);
input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

A\ SUNY - New Paltz

¥ Elect. & Comp. Eng.

Dataflow Modeling

/ /Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);
input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

\ concatenation ‘ ‘ Binary addition ‘
A\ SUNY — New Paltz

¥ Elect. & Comp. Eng.

Introduction to Verilog

15

EGC 455
Design and Verification of System on Chip

ra

Design of an ALU using Case
Statement

0 Clear

1 B-A

2 A-B

3 A+B

4 A XOR B

5 A ORB

6 A AND B

7 Settoall 1’s

| bl SUNY — New Paltz

Elect. & Comp. Eng.

// 74381 ALU

module alu(s, A, B, F);

input [2:0] s;

input [3:0] A, B;

output [3:0] F

reg [3:0] F;
always (@(s or A or B)
case (s)

0: F = 4'50000;
I:F=B-A;
2:F=A-B;
3:F=A+B;
4:F=A"B;
5:F=A | B;
6: F=A &B;
7:F=4b1111;
endcase
endmodule

\—f—'\f—-—-’:‘/\u—J\/w—-—/V‘"—‘

// 74381 ALU

module VALU(s, A, B, F);
input [2:0] s;

input [3:0] A, B;
output [3:0] F;

reg [3:0] F;

always @(s or A or B)
case (s)

0: F =4'b0000;
:F=B-A;
:F=A-B;
:F=A+B;
F=A"B;
:F=A|B;
:F=A&B;

:F=4blll11;
endcase
b SUNY - New Paltz endmodule

Elect. & Comp. Eng.

A ANG =0 A-B b N Th e N5

Eaul ';,‘(\AG

<#> J

Introduction to Verilog

9/23/2021

16

EGC 455

Design and Verification of System on Chip

\
h

Golden Rules

e Golden Rule 1:

® To synthesize combinational logic using an always block, all

inputs to the desz'gn must appear in the sensitivity list.

® Golden Rule 2:

® To synthesize combinational logic using an always block, all

variables must be assigned under all conditions.

SUNY — New Paltz

| 68 + 0. -~ ~
» Elect. & Comp. Eng.

Golden

reg f;
always @ (sel, a, b)
begin :
if (sel ==1)
f=a;
else
f=";
end

* Proper as intended

' '\l SUNY - New Paltz

» Elect. & Comp. Eng.

Rules

Reg f;
always @ (sel, a, b)
begin f=b;
if (sel ==1)
f=a;
end

» Setting variables
to default values
at the start of the
always block

* OK as well!

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f=a;
end

lat ch
u f

* What if sel = 0?

» Keep the current value
* Undesired functionality

e Unintended latch
* Need to include else

Introduction to Verilog

9/23/2021

17

EGC 455 9/23/2021
Design and Verification of System on Chip

4 Blocking vs. Nonblocking Assignments

" Verilog supports two types of assiscnments within always
blocksg, wil‘:t)IFl) subtly dift)gr)ent beha\%ors. 4

" Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

beagin
x =a | b; 1. Evaluate a | b, assign result to x
y=a”b”c; 2. Evaluate a*b”c, assign result to y
%j =b & ~c; 3. Evaluate b&(~c), assign result to z
en

* Nonblocking assignment: all assignments deferred until all right-hand
sides haveéi)een evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X.<='a | b; 1. Evaluate a | b but defer assignment of x
y.<=a”b~c; 2. Evaluate a*b”c but defer assignment of y
zZ <=b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

H * Sometimes, as above, both produce the same result. Sometimes, not!

A\ SUNY — New Paltz D

¥ Elect. & Comp. Eng.

(Blocking vs. Nonblocking Assignments

> The = token represents a blocking blocking procedural assignment
v" Evaluated and assigned in a single step
v’ Execution flow within the procedure is blocked until the

assignment is completed

» The <= token represents a non-blocking assignment
v" Evaluated and assigned in two steps:
1. The right hand side is evaluated immediately
2. The assignment to the left-hand side is postponed until other

evaluations in the current time step are completed

//swap bytes in word //swap bytes in word
always (@(posedge clk) always (@(posedge clk)
begin begin
word[15:8] = word][7:0]; word[15:8] <= word[7:0];
word[7:0] = word[15:8]; word[7:0] <= word[15:8];
A\ SUNY - New Paitz <24 ity
P Elect. & Comp. Eng. J

Introduction to Verilog 18

EGC 455

Design and Verification of System on Chip

Va

Why two ways of assigning values?

Conceptual need for two kinds of assignment (in always blocks):

Assignment is postponed until
all r.h.s. evaluations are done

Blocking: a-=-> X —aé&b
Evaluation and assignment ’7_ _
are immediate b =a Y = X ! (63
Non-Blocking: <=

<=

When to use:

(only in always blocks!)

Sequential
Circuits

Combinational
Circuits

| ”ISUNYNM\PMU

¥ Elect. & Comp. Eng.

~

Assignment Styles for Sequential

Logic

Flip-Flop Based
Digital Delay

Line

In—

D Q—|D Q

q1

\4

q2

—~—D Qf— out

A\

D>
clk r_

-

-

Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);

input in, clk;

output out;

reg gql, g2, out;
always @ (posedge clk)

begin
ql <= in;
g2 <= ql;
out <= (g2;
end

endmodule

| ”ISUNYNM\PMU

¥ Elect. & Comp. Eng.

module blocking(in, clk, out);

input in, clk;

output

reg ql,

out;
q2, out;

@ (posedge clk)

in;

endmodule

=

Introduction to Verilog

9/23/2021

19

EGC 455

Design and Verification of System on Chip

4

A\ SUNY — New Paltz
» Elect. & Comp. Eng.

Use Nonblocking for Sequential
Logic

always @ (posedge clk) always @ (posedge clk)

begin Yegin
ql <= in; al = in;
g2 <= q1; q2 = ql;
out <= g2; out = g2;
end end

“At each rising clock edge, g1, g2, and
out simultaneously receive the old values
ofin, g1, and g2.”

“At each rising <'uck edge, gl = in.
After that, 2 - gq. = in; After that,

out=q2 = r.=in; Fi ally out = in.”

q1 q2

) ql g2
in—D QF—~—|D QD Qf—out n-

D QF——— out

Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

+ Guideline: use nonblocking assignments for
sequential always blocks

Va

A\ SUNY — New Paltz
» Elect. & Comp. Eng.

Use Blocking for Combinational N

Logic

Bl ocking Behavior abc xy always @ (a or b or c)
(Given) Initial Condition 110 11 begin
achanges;) 010 11 X = a & b; —— — —
always block triggered y = X I c:
X = a &b; 010 01 end
y=x]c; 010 00

Nunblocking Behavior abc xy | Deferred
(Given) Initial Condition | 110 11

. always @ (a or b or ¢)
achanges; i

always block triggered 01011 negin

X <= a & b; 010 11 | x<=0).<.<=a&b;

y <=xlc; 010 11 | x<=0, y<=1 Y-7 ¥ 1.6

end

Assignment completion 010 01
Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

* Guideline: use blocking assignments for
combinational always blocks

Introduction to Verilog

9/23/2021

20

EGC 455

Design and Verification of System on Chip

Propagation Delay for an Inverter

IN

fpHL IpLH

IN <D& OUT OUT

Ipg = max (fpye. fpLy)

gt C2016 Pearson Educetion, A% Rights Reserved

| i\\sl SUNY — New Paltz

W Elect. & Comp. Eng.

vransitions have stopped! j
| i

Single-clock Synchronous Circuits

We'll use Flip Flops and Registers - groups of FFs sharing a clock input - ina
highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

ﬂo combinational cycles \

* Single clock signal shared

among all clocked devices Q)

¢ Only care about value of
combinational circuits just
before rising edge of clock

* Period greater than every O)
combinational delay N\

¢ Change saved state after
noise- inducing logic

AV SUNY — New Paltz
W Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

21

EGC 455

Design and Verification of System on Chip

Asynchronous Inputs in Sequential Systems

What about external signals?

T |, Can't guarantee
o — |
_TL_O Sequential System setup and hold
times will be met!
Clock -]
When an asynchronous signal causes a setup/hold
violation. ..
| u m
D_J | /
Clock _ [/ _ [/ \ _ [U/ I\
Transition is missed on Transition is caught on Output is metastable
first clock cycle, but first clock cycle. for an indeterminate
caught on next clock amount of time.
cycle.

Q: Which cases are problematic?

AY SUNY - New Paltz

P

Elect. & Comp. Eng.

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

Clocked
Synchronous
System

e I Sequential System
,__° o— — |
\\
= N Y
Clock ;

This prevents the possibility of I and IT occurring in different places
in the circuit, but what about metastability?

' l SUNY — New Paltz

P

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

22

Design and Verification of System on Chip

Handling Metastability

Preventing metastability turns out to be an impossible problem

High gain of digital devices makes it likely that metastable
conditions will resolve themselves quickly

Solution to metastability: allow time for signals to stabilize

Can be Very unlikely to be Extremely unlikely to
metastable metastable for >1 be metastable for >2
right after clock cycle clock cycle
sampling \ \ /
T Complicated
_|__° o——— Sequential Logic
= System

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, ..)
In above, a pair of synchronization registers is sufficient

' l SUNY — New Paltz

¥ Elect. & Comp. Eng.

Finite State Machines (FSM)

® State diagrams are representations of Finite State Machines (FSM)

* Mealy FSM : Ot o1 @

o
o m
10 an 10

® can have temporarily unstable output s w6

® Moore FSM
® Output depends only on state

® Output depends on input and state

® Output is not synchronized with clock

0
' l SUNY — New Paltz

¥ Elect. & Comp. Eng.

=

Introduction to Verilog

9/23/2021

23

EGC 455

Design and Verification of System on Chip

Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

At each clock edge, combinational logic computes outputs and

next state as a function of inputs and present state

CLK

SUNY — New Paltz
Elect. & Comp. Eng.

inputs =) oOUtputs
+ +
present next
state state

Two Types of FSMs

direct combinational path!

inputs
Xog+eXn

SUNY — New Paltz
Elect. & Comp. Eng.

Moore and Mealy FSMs : different output generation

* Moore FSM:
inputs outputs
—
Xgee:Xn Yk =fi(S)
present state S
* Mealy FSM:

outputs

| Y= fi(S, Xo.-X)

Introduction to Verilog

9/23/2021

24

EGC 455

Design and Verification of System on Chip

AY SUNY - New Paltz

Example: Light Switch

- State transition diagram

BUTTON-=0

PS NS
Q Butto Q&D

Button M}
O O Light
1 0 i
1 1
0 1

Light

—_—_—0 O
— o — OB

D=QB+QB
Light = Q

»-D :

BUTTON - - 1
CLK >

Note: B = Button

y3)
A 4

LIGHT

¥ Elect. & Comp. Eng.

CLK >
' 'l SUNY — New Paltz Register

Example: Light Switch

+ State transition diagram

BUTTON=1
BUTTON-=0
BUTTON=1

* Logic diagram
9 9 Combinational logic

-3

- 1

BUTTON b Qq——

¥ Elect. & Comp. Eng.

BUTTON=0

LIGHT

Introduction to Verilog

9/23/2021

25

EGC 455

Design and Verification of System on Chip

end
endmodule

output light; reg light;
always (@ (posedge clk) begin
it (button) light <= ~light;

/Clocked circuit for on/off button

module onoff(clk,button, light);
input clk,button;

BUTTON

CLK

LIGHT

D Q
>

A 4

CLK

A

SINGLE GLOBAL CLOCK
i\\s SUNY — New Paltz

W Elect. & Comp. Eng.

LOAD-ENABLED REGISTER

end
endmodule

output light; reg light;
always (@ (posedge clk) begin
if (button) light <= ~light;

module onoff(clk,button,light);
input clk,button;

Clocked circuit for on/off button

Does this work
with a 1Mhz

e \ .
4

BUTTON
CLK
<

CLK

LIGHT

D Q

>

SINGLE GLOBAL CLOCK
i\\s SUNY — New Paltz

W Elect. & Comp. Eng.

LOAD-ENABLED REGISTER

Introduction to Verilog

9/23/2021

26

EGC 455

Design and Verification of System on Chip

' ﬁ!SUNYNmVPMu

4 Example: 4-bit Counter

* Logic diagram

* Verilog

4 4
+1 > » count
4-bit counter CIk
module counter(clk, count);

input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+l;
End
endmodule

W Elect. & Comp. Eng.

" Example: 4-bit Counter

* Logic diagram

* Verilog

@ a » count
erTIb

che

4-bit counter with enable
modulle counter(clk,enb,count);
input clk,enb;

output [3:0] count; Could T use the following instead?
reg [3:0] count; if (enb) count <= count+1;
always @ (posedge clk) begin »

count <= enb ? count+l : count;

end
endmodule

| i\\sl SUNY — New Paltz

W Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

27

EGC 455

Design and Verification of System on Chip

4

Example: 4-bit Counter

* Logic di
ogic diagram 0 4 4

@ » count

" Verilog enb c[r cIk
4-bit counter with enable and synchronous clear

modulle counter(clk,enb,clr,count);
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @(posedge clk) begin
count <= clr ? 4°b0 : (enb ? count+l : count);
end
endmodule

SUNY — New Paltz

P Elect. & Comp. Eng.
’

n

"

bit Shift Register with Reset

module srg_4 r_v (CLK, RESET, SI, Q,S0);
input CLK, RESET, SI;
output [3:0] Q;
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET) begin
it (RESET)
Q <= 47b0000;
else
Q <= {Q[2:0]., SI};
end
endmodule

SUNY — New Paltz

P Elect. & Comp. Eng.
’

Introduction to Verilog

9/23/2021

28

EGC 455

Design and Verification of System on Chip

—
4-bit Binary Counter with Reset

modulle count_4 r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;
output CO;
reg [3:0] Q;
assign CO = (count == 4"b1111 && EN == 1°b1) ? 1 : O;
always@(posedge CLK or posedge RESET)
begin
it (RESET)
Q <= 4"b0000;
else it (EN)
Q <= Q + 47b0001;
end
endmodule

A\ SUNY - New Paltz

¥ Elect. & Comp. Eng.

Sequence Detector

« Circuit specification:
* Design a circuit that outputs a 1 when three consecutive 1’s have been
received as input and 0 otherwise. 0

* FSM type 0
* Moore or Mealy FSM? , 1', e

. i 1
» Both possible S) +(5,/0
¢ » Chose Moore to simplify diagram 3

« State diagram:
e » State SO: zero 1s detected 0
e » State S1: one 1 detected A &
o » State S2: two 1s detected e

1
e » State S3: three 1s detected = 1 @

' KISUNYNemeu

¥ Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

29

EGC 455

Design and Verification of System on Chip

Ve
Sequence Detector: Verilog (Moore FSM)

module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection
input x, clk;
output y;
reg [1:0] state;
parameter S0=2"b00, S1=2"b01, S2=2"b10, S3=2"bll;
// Define the sequential block 0
always @(posedge clk)
case (state) £\ 0
S0: if (x) state <= S1; [|
else state <= SO;

S1: if (x) state <= S2;
else state <= SO;
S2: if (x) state <= S3;
else state <= SO;)
S3: if (x) state <= S3; g
else state <= SO; 5

endcase
// Define output during S3
assign y = (state == S3);

endmodule

' &l SUNY — New Paltz I

Elect. & Comp. Eng.

\

Ve
Sequence Detector: Verilog (Mealy FSM)

module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection
input x, clk;
output y; regy;
parameter S0=2"b00, S1=2"b01, S2=2"b10, S3=2"bl1l;
// Next state and output combinational logic 0/0
// Use blocking assignments "'=" 0/0
always @(x or pstate)
case (pstate)
SO0: if (xX) begin nstate = S1; y = 0; end
else begin nstate = SO; y = 0; end
S1: if (X) begin nstate = S2; y = 0; end
else begin nstate = SO; y = 0; end
S2: if (xX) begin nstate = S3; y = 1; end
else begin nstate = SO; y = 0; end
S3: if (X) begin nstate = S3; y = 1; end
else begin nstate = SO; y = 0; end
endcase 1
// Sequential logic, use nonblocking assignments "<="
always @(posedge clk)
pstate <= nstate;
endmodule
E SUNY — New Paltz

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

30

EGC 455

Design and Verification of System on Chip

SUNY — New Paltz

g Elect. & Comp. Eng.

Verilog Name Functional Verilog Name Functional
Operator Group Operator Group
[bit-select or part- + binary plus arithmetic
select - binary minus arithmetic
O) parenthesis << shift left shift
! logical negation logical >> shift right shift
~ negation bit-wise > greater than relational
& reduction AND reduction >= greater than or equal relational
| reduction OR reduction < to relational
~& reduction NAND reduction <= less than relational
~ reduction NOR reduction less than or equal to
" reduction XOR reduction == case equality equality
~" or *~ reduction XNOR reduction 1= case inequality equality
+ unary (sign) plus arithmetic & bit-wise AND bit-wise
- unary (sign) minus arithmetic A bit-wise XOR bit-wise
{} concatenation concatenation | bit-wise OR bit-wise
{{}} replication replication && logical AND logical
* multiply arithmetic |] logical OR logical
/ divide arithmetic 7 conditional conditional
modulus arithmetic

/

Testing a Verilog Model

® A model has to be tested and validated before it can be

successfully used.

® A test bench is a piece of Verilog code that can provide input

combinations to test aVerilog model for the system under

test.

® Test benches are frequently used during simulation to

provide sequences of inputs to the circuit or Verilog model

under test.

SUNY — New Paltz

g Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

31

EGC 455

Design and Verification of System on Chip

Stimulus module

Design module

module testcircuit

reg TA, TB; >

wire TC, |-

circuit cr (TA, TB, TC);

module circuit (A, B, C):
input A, B;

output C:

Fig. 4-33 Stimulus and Design Modules Interaction

| l SUNY — New Paltz
Elect. & Comp. Eng.

a

Testbench for the Structural Model of the
Two-Bit Greater-Than Comparator

reg [1:0] A, B;
wire struct_out;

initial

| ;l SUNY - New Paltz

Elect. & Comp. Eng.

comparator_greater_than_structural Ul(a,

Capyrght EI016 Prarscn Tducation, AT Rights Reserved

// Testbench for Verilog two-bit greater-than comparator
module comparator_testbench_wverilog();

B, struct_out);

I
I/
!
L
/"
i
I
!
s
I/
/
rf
!
s
/

(= JEE I NS T R

e el e i e e
~ W N E O W

\

Introduction to Verilog

9/23/2021

32

EGC 455 9/23/2021
Design and Verification of System on Chip

Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)

1
A y wi i ; !
sl Gl D ; D inputA, B, C;
1

output D, E;

) i - | wire wl;
&9 D‘ : R and # (30) G1 (w1, A, B);
: not #10 G2 (E, C);

Table 3.5
Output of Gates after Delay orf(%;) 1G3 (I ko B
enamodule
Input Output
Time Units

(ns) ABC EwlD . , e .
Initial — 000 1 01
Change - 111 L o1

10 111 0 o1 |,

20 111 0 01

30 111 010"

40 111 0 10

50 111 0 11

L ‘SUI\Y New Paltz
b Elect. & Comp. Eng. J

Testing a Verilog Model (continued)

e Test bench for testing a 4-bit binary adder:

Addend P
Augend B
Test Curry in c 4Lt
hench Sam i adder
-
L
Carry on L,

| bl SUNY — New Paltz

Elect. & Comp. Eng. J

Introduction to Verilog 33

EGC 455

Design and Verification of System on Chip

module t_circuit; e
regt_A,t_B: =
wiret_C;
parameter stop_time = 1000 ;

Y
N /"_"‘\ S

[\
circuit M ({t_C) t_A,t_B):
(\ y e

b

// Stimulus generators for

/[l t_A and t_B go here
initial # stop_time $finish;

endmodule

(" Interaction between stimulus
and design modules

module circuit ((CJA, l§)

"

“| input A, B;

output (CH

// Description goes here
endmodule

| bl SUNY — New Paltz

Elect. & Comp. Eng.

Arithmetic in Verilog

module Arithmetic (A, B,Y1,Y2,Y3,Y4,Y5);

input [2:0] A, B;

output [3:0]Y1;

output [4:0]Y3;

output [2:0]Y2,Y4,Y5;

reg [3:0]Y1;

reg [4:0]Y3;

reg [2:0]Y2,Y4,Y5;

always (@(A or B)

begin
Y1=A+B,;//addition
Y2=A-B;//subtraction
Y3=A*B;//multiplication
Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end
endmodule
b SUNY — New Paltz

Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

34

EGC 455
Design and Verification of System on Chip

module Equality (A, B,Y1,Y2,Y3);
input [2:0] A, B;
output Y1,Y2;
output [2:0]Y3;
reg Y1,Y2;
reg [2:0]Y3;
always @(A or B)
begin

if (A==B)//parenthesis needed
Y3=A;
else

Y3=B;

5

end
endmodule
E\& SUNY — New Paltz

P Elect. & Comp. Eng.
’

va
Equality and inequality Operations in Verilog

Y1=A==B;//Y1=1if A equivalent to B
Y2=A!=B;//Y2=1 if A not equivalent to B

va
Logical Operations in Verilog

module Logical (A, B, C, D, E, EY);
input [2:0]A, B, C, D, E, F;

output Y;
reg Y;
always @(A or Bor C or D or E or F)
begin
if (A==B) & ((C>D) | | (E<F)))
Y=1;
else
Y=0;
end
endmodule
Hg\& SUNY — New Paltz
WP Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

35

EGC 455 9/23/2021
Design and Verification of System on Chip

(ot o . .
Bit-wise Operations in Verilog
module Bitwise (A, B,Y);
input [6:0] A;
input [5:0] B;
output [6:0]Y;
reg [6:0]Y;
always (@(A or B)
begin
Y[0]=A[0]&B[0]; / /binary AND
Y[1]=A[1]|B[1]; / /binary OR
Y[2]=!(A[2]&B[2]); / /negated AND
Y[3I=!(A[3]| B[3]); / /negated OR
Y[4]=A[4]"B[4]; / /binary XOR
Y[5]=A[5]~"B[5]; / /binary XNOR

Y[6]=!A[6]; / /unary negation

end
\ endmodule
-\\3 SUNY - New Paltz

|
» Elect. & Comp. Eng. J

. Concatenation and Replication in Verilog

® The concatenation operator "{ , }" combines (concatenates) the bits
of two or more data objects. The objects may be scalar (single bit) or
vectored (multiple bit). Multiple concatenations may be performed
with a constant prefix and is known as replication.
module Concatenation (A, B,Y);
input [2:0] A, B;
output [14:0]Y;
parameter C=3'b011;
reg [14:0]Y;
always @(A or B)
begin
Y={A, B, {2{C}}, 3b110};

end

module
A\SUNY — New Paltz

|
» Elect. & Comp. Eng. J

Introduction to Verilog 36

EGC 455 9/23/2021
Design and Verification of System on Chip

—
Shift Operations in Verilog

module Shift (A,Y1,Y2);

input [7:0] A;

output [7:0]Y1,Y2;

parameter B=3; reg [7:0]Y1,Y2;

always @(A)

begin
Y1=A<<B; //logical shift left
Y2=A>>B; //logical shift right

end

endmodule

| I?\X}I SUNY — New Paltz

|
W Elect. & Comp. Eng. J

va
Conditional Operations in Verilog

module Conditional (Time,Y);
input [2:0] Time;
output [2:0]Y;
reg [2:0]Y;
parameter Zero =3b'000;
parameter TimeOut = 3b'110;

always @(Time)
begin
Y=(Time!=TimeOut) ?Time +1 : Zero;
end
endmodule

| I?\X}I SUNY — New Paltz

|
W Elect. & Comp. Eng. J

Introduction to Verilog 37

EGC 455
Design and Verification of System on Chip

—
Reduction Operations in Verilog

module Reduction (A,Y1,Y2,Y3,Y4,Y5,Y6);

input [3:0]A;

output Y1,Y2,Y3,Y4,Y5,Y6;

reg Y1,Y2,Y3,Y4,Y5,Y6;

always @(A)

begin
Y1=&A; //reduction AND
Y2=|A; //reduction OR
Y3=~&A; //reduction NAND
Y4=~|A; //reduction NOR
Y5="A; //reduction XOR
Y6=~"A; //reduction XNOR

end
endmodule
[\ .
| |-\\3I SUNY — New Paltz
» Elect. & Comp. Eng.

Introduction to Verilog

9/23/2021

38

