
EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 1

EGC 455

Design &Verification of SOC

Design Using Verilog - I

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

SUNY – New Paltz
Elect. & Comp.  Eng. 

Computer-Aided Design (CAD)

 Steps in modern digital system design:
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CAD (continued)
 Target technologies that are available:

 Most common: field programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs).

SUNY – New Paltz
Elect. & Comp.  Eng. 

Hardware Description Languages 
(HDLs)
 HDLs can describe a digital system at several different 

levels—behavioral, data flow, and structural.

 HDLs lead naturally to a top-down design methodology.

 Two popular HDLs—VHDL and Verilog.

 Verilog is a HDL used to describe the behavior and / or 
structure of digital systems.
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Compilation, Simulation, and Synthesis of 
Verilog Code 

 Simulation and synthesis process:

 A netlist is a list of required components and their interconnections.

SUNY – New Paltz
Elect. & Comp.  Eng. 

Basic Verilog
 Lexical Convention

 Lexical convention are close to C++.

 Comment
 // to the end of the line.
 /* to */ across several lines

 Keywords are lower case letter & it is case sensitive

 VERILOG uses 4 valued logic: 0, 1, x and z

 Comments: // Verilog code for AND-OR-INVERT gate
module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

…

<functionality_of_module>

…

endmodule
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Behavioral and Structural Verilog
 Any circuit or device can be represented in multiple forms of 

abstraction. 

 Example:

SUNY – New Paltz
Elect. & Comp.  Eng. 

Behavioral and Structural Verilog
(continued)
 3 Models:
 Structural: 
 Specifies more details.

 Components used and the structure of the interconnection between the 
components are clearly specified.

 At a low level of abstraction.

 Data Flow (Register Transfer Language):
 Data path and control signals are specified.

 System is described in terms of the data transfer between registers.

 Behavioral:
 Specifies only the behavior at a higher level of abstraction.

 Does not imply any particular structure or technology. 
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Module portsModule name

Verilog keywords

Taste of Verilog

module Add_half ( sum, c_out, a, b );
input
output
wire

a, b;
sum, c_out;  
c_out_bar;

xor (sum, a, b);
// xor G1(sum, a, b);
nand (c_out_bar, a, b);
not (c_out, c_out_bar);

endmodule

Declaration of port  
modes

Declaration of internal  
signal

c_out

a
b sum

c_out_bar

Instantiation of primitive  
gates

G1

SUNY – New Paltz
Elect. & Comp.  Eng. 

Lexical Convention
• Numbers are specified in the 

traditional form  or below .
<size><base format><number>

• Size: contains decimal digitals 
that specify the  size of the 
constant in the number of bits.

• Base format: is the single 
character ‘ followed  by one of 
the following characters  
b(binary),d(decimal),o(octal),h(hex).

• Number: legal digital.

Example :
• 347 -- decimal number
• 4’b101 -- 4- bit 01012

• 2’o12 -- 2-bit octal number
• 5’h87f7 -- 5-digit 87F716

• 2’d83 -- 2-digit decimal
• String in double quotes

“ this is a introduction”
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Three Modeling Styles in Verilog

 Structural modeling (Gate-level)
 Use predefined or user-defined primitive gates.

 Dataflow modeling
 Use assignment statements (assign)

 Behavioral modeling
 Use procedural assignment statements (always)

SUNY – New Paltz
Elect. & Comp.  Eng. 

Structural Verilog Description of Two-Bit 
Greater-Than Circuit
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Dissection

 Module and Port declarations
 Verilog-2001 syntax
 module AOI (input A, B, C, D, output F);

 Verilog-1995 syntax
module AOI (A, B, C, D, F);

input A, B, C, D;
output F;

 Wires: Continuous assignment to an internal signal

SUNY – New Paltz
Elect. & Comp.  Eng. 

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

wire F;  // the default

wire AB, CD, O;  // necessary

assign AB = A & B;

assign CD = C & D;

assign O = AB | CD;

assign F = ~O;

endmodule

// end of Verilog code

Continuous Assignments
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A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for  AND, ‘|’ for OR, ‘^’ for XOR ‘^~’ for XNOR, ‘&~’ for NAND

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Verilog Description of Two-Bit 
Greater-Than Comparator
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Conditional Dataflow Verilog Description 
of Two-Bit Greater-Than Circuit

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Description of Two-Bit Greater-
Than Circuit
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A Design Hierarchy
 Module Instances

 MUX_2 module contains references to 
each of the lower level modules

// Verilog code for 2-input multiplexer

module MUX2 (input SEL, A, B, output F);      
// 2:1 multiplexer

// wires SELB and FB are implicit

// Module instances...

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (.A(FB), .F(F));    // Named mapping

endmodule

// end of Verilog code

// Verilog code for 2-input multiplexer
module INV (input A, output F);   // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

F = (SEL)’. A + (SEL).B
SELB = (SEL)’
F=(SELB).A + (SEL).B
1. Invert SEL and get SELB 
2. Use AOI and get F’
3. Invert F’ and get F

SUNY – New Paltz
Elect. & Comp.  Eng. 

Another Example
module decoder (A,B, D0,D1,D2,D3);

input A,B;

output D0,D1,D2,D3;

assign  D0 = ~A&~B;

assign  D1 = ~A&B;

assign  D2 = A&~B;

assign  D3 = A&B;

endmodule
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Hierarchical representation of Adder 
module fulladder (A,B,CIN, S,COUT);

input A,B,CIN;

output S,COUT;

assign S = A ^ B ^ CIN;

assign COUT = (A & B) |(A & CIN) 
| (B & CIN);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0, S3,S2,S1,S0,COUT);

input  CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0;

output  S3, S2, S1, S0, COUT;

wire C1, C2, C3;

fulladder FA0 (X0, Y0, CIN, S0, C1);

fulladder FA1 (X1, Y1, C1, S1, C2);

fulladder FA2 (X2, Y2, C2, S2, C3);

fulladder FA3 (X3, Y3, C3, S3, COUT);

endmodule
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module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire  [4:0] C;

full _adder  FA0 (B(0), A(0), C(0), S(0), C(1));

full _adder  FA1 (B(1), A(1), C(1), S(1), C(2));

full _adder  FA2 (B(2), A(2), C(2), S(2), C(3));

full _adder  FA3 (B(3), A(3), C(3), S(3), C(4));

assign C(0) = CIN;

assign COUT = C(4);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)

 Gate instantiations
 and (z, x, y), or (c, a, b), xor (S, x, y), etc.

 Continuous assignments
 assign Z = x & y; c = a | b; S = x ^ y

2. Procedural statements (sequential)
(executed in the order written in the code)

 always @ - executed continuously when the event is active
 Initial - executed only once (used in simulation)
 if then else statements
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Behavioral Description

module Add_half ( sum, c_out, a, b );
input  
output

a, b;
sum, c_out;

// Exclusive or
// And

reg sum, c_out;
always @ ( a or b )

begin
sum = a ^ b;  
c_out = a & b;

end  
endmodule

b
Add_halfa su

c_

m  

out

Event control  
expression or 
sensitivity listProcedure  

assignment  
statements

Must be of the  
‘reg’ type

SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Statement

 Conditional_expression ? true_expression : false expression;

Example:
 Assign A = (B<C) ? (D+5) : (D+2);
 if B is less than C, the value of A will be D + 5, or else A will have the 

value D + 2.  

 An if-else statement is a procedural statement.
//Behavioral specification

module mux2to1 (w0, w1, s, F);

input wo,w1,s;

output F;

reg F;

always @ (w0,w1,s)
if (s==1) F = w1;
else F = w0;
endmodule

sensitivity list

always @ (w0,w1,s)
F = s ? w1: w2;
endmodule
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Mux 4-to-1
module mux4to1 (w0, w1,w2, w3, S, F);

input w0,w1,w2,w3,[1:0] S;

output F;

reg F;

always @ (w0,w1,w2,w3,S)

if (S==0) F = w0;

else if (S==1) F = w1;

else if (S==2) F = w2;

else F = w3;

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Boolean Operators in Verilog
Verilog Operator Name Functional Group

>   >=   <   <=

greater than greater 
than or equal to less 
than less than or equal 
to

relational

==   !=
case equality case 
inequality

equality 

&   ^   |
bit-wise AND bit-wise 
XOR bit-wise OR

bit-wise bit-wise

&&    ||
logical AND logical 
OR

logical
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Another Example

//Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);

input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Modeling

//Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

concatenation Binary addition
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Design of an ALU using Case 
Statement

// 74381 ALU 
module alu(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F; 
always @(s or A or B) 
case (s) 
0: F = 4'b0000; 
1: F = B - A; 
2: F = A - B; 
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule

S Function

0 Clear

1 B-A 

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

// 74381 ALU 
module VALU(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F;
always @(s or A or B) 
case (s)
0: F = 4'b0000;
1: F = B - A;
2: F = A - B;
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule <#>
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Golden Rules 
 Golden Rule 1:

To synthesize combinational logic using an always block, all 
inputs to the design must appear in the sensitivity list.

 Golden Rule 2:

To synthesize combinational logic using an always block, all 
variables must be assigned under all conditions.

SUNY – New Paltz
Elect. & Comp.  Eng. 

Golden Rules 

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f = a;

end

• What if sel = 0?
• Keep the current value

• Undesired functionality 
• Unintended latch

• Need to include else

reg f;
always @ (sel, a, b)
begin :
if (sel == 1)
f = a;

else
f = b;

end

• Proper as intended

Reg f;
always @ (sel, a, b)
begin f = b;

if (sel == 1)
f = a;

end

• Setting variables 
to default values 
at the start of the 
always block

• OK as well!
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1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c  but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all  right-hand 
sides have been evaluated (end of simulation  timestep)

• Sometimes, as above, both produce the same result.  Sometimes, not!

 Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

 Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)  
begin
x = a | b; 1. Evaluate a | b, assign result to x

y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)  
begin

x.<= a | b;
y.<= a ^ b ^ c;  
z <= b & ~c;

end 4. Assign x, y, and z with their new values

SUNY – New Paltz
Elect. & Comp.  Eng. 

Blocking vs. Nonblocking Assignments
 The = token represents a blocking blocking procedural assignment
 Evaluated and assigned in a single step 
 Execution flow within the procedure is blocked until the 

assignment is completed 

 The <= token represents a non-blocking assignment
 Evaluated and assigned in two steps: 

1. The right hand side is evaluated immediately 
2. The assignment to the left-hand side is postponed until other 

evaluations in the current time step are completed 

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] <= word[ 7:0]; 
word[ 7:0] <= word[15:8]; 
end

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] = word[ 7:0]; 
word[ 7:0] = word[15:8]; 
end
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Why two ways of assigning values?
Conceptual need for two kinds of assignment (in always blocks):

a  

b

a  
b

c

x  

y

Blocking:
Evaluation and assignment  
are immediate

a = b  
b = a

x = a & b  
y = x | c

Non-Blocking: a <= b
Assignment is postponed until
all r.h.s. evaluations are done b <= a

x <= a & b  
y <= x | c

When to use:
( only in always blocks! )

Sequential  
Circuits

Combinational  
Circuits

SUNY – New Paltz
Elect. & Comp.  Eng. 

Assignment Styles for Sequential
Logic

• Will nonblocking and blocking assignments both  
produce the desired result?

module nonblocking(in, clk, out);  
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)  
begin

q1 <= in;  
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based  
Digital Delay  

Line

module blocking(in, clk, out);  
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 = in;  
q2 = q1;
out = q2;

end

endmodule
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Use Nonblocking for Sequential
Logic

D Q D Qin out
q1 q2

D Q

q1 <= in;  
q2 <= q1;
out <= q2;

end

“At each rising clock edge, q1, q2, and  
out simultaneously receive the old values  

of in, q1, and q2.”

always @ (posedge clk) always @ (posedge clk) 
begin begin

q1 = in;  
q2 = q1;
out = q2;

end

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in; After that,
out = q2 = q1 = in; Finally out = in.”

clk

• Blocking assignments do not reflect the intrinsic behavior of  
multi-stage sequential logic

• Guideline: use nonblocking assignments for  
sequential always blocks

in out

clk

D Q
q1 q2

SUNY – New Paltz
Elect. & Comp.  Eng. 

Use Blocking for Combinational
Logic

• Guideline: use blocking assignments for  
combinational always blocks

Bl

No

always @ (a or b or c)  
begin

x.<= a & b;
y.<= x | c;  
end

• Nonblocking assignments do not reflect the intrinsic behavior of  
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly  
(expand the sensitivity list), it’s not elegant

always @ (a or b or c)
begin
x = a & b;
y = x | c;

end
a  
b

c

x  

y

ocking Behavior a b c  xy

(Given) Initial Condition 1 1 0  1 1
a changes;
alwaysblock triggered 0 1 0  1 1

x = a & b; 0 1 0  0 1
y = x | c; 0 1 0  0 0

nblocking Behavior a b c  xy Deferred

(Given) Initial Condition 1 1 0  1 1
a changes;
alwaysblock triggered

0 1 0  1 1

x <= a & b; 0 1 0  1 1 x<=0
y <= x | c; 0 1 0  1 1 x<=0, y<=1
Assignment completion 0 1 0  0 1
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Propagation Delay for an Inverter

SUNY – New Paltz
Elect. & Comp.  Eng. 

Single-clock Synchronous Circuits

We’ll use Flip Flops and Registers – groups of FFs sharing a clock input – in a  

highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

• No combinational cycles

• Single clock signal shared 

among  all clocked devices

• Only care about value of  

combinational circuits just  

before rising edge of clock

• Period greater than every  

combinational delay

• Change saved state after 

noise- inducing logic 

transitions have  stopped!
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Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee  
setup and hold  
times will be met!

When an asynchronous signal causes a setup/hold  
violation...

Q  

D

Clock

Transition is missed on  
first clock cycle, but  
caught on next clock  
cycle.

Transition is caught on  
first clock cycle.

?

I II III

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

SUNY – New Paltz
Elect. & Comp.  Eng. 

Asynchronous Inputs in Sequential Systems

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places  
in the circuit, but what about metastability?

D  Q

D  Q

Q0

Clock

Clock

Q1

Async  
Input

All of them can be, if more than one happens  
simultaneously within the same circuit.

Idea: ensure that external signals directly feed  
exactly one flip-flop

Clocked  
Synchronous

System
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Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable  

conditions will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In above, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic  
System

Clock

D Q D Q

Can be  
metastable  
right after  
sampling

Very unlikely to be  
metastable for >1  
clock cycle

Extremely unlikely to  
be metastable for >2  
clock cycle

SUNY – New Paltz
Elect. & Comp.  Eng. 

Finite  State Machines (FSM)
 State diagrams are  representations of Finite  State Machines (FSM)

 Mealy FSM
 Output depends on input and  state
 Output is not synchronized  with clock
 can have temporarily  unstable output

 Moore FSM
 Output depends only on state

25

Mealy  
FSM

Moore  
FSM
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Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for  sequential 
circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational  
Logic

Flip-
Flops

Q D

CLK

inputs

+

present  
state

outputs

+

next  
state

n n

SUNY – New Paltz
Elect. & Comp.  Eng. 

Two Types of FSMs

outputs
yk = fk(S)

inputs
x0...xn

Comb.  
Logic

n

Flip-
Flops

Comb.  
Logic

D Q
n

CLK

Moore and Mealy FSMs : different output generation

• Moore FSM:
next  
state

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.  
Logic

CLK

Flip-
Flops

Comb.  
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!
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Example: Light Switch

0/LIGHT
= 0

1/LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram
BUTTON=1

PS NS
Q Butto

n
Q & D Light

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

D         Q   

Q

Q

Button

D = Q’B + QB’
Light = Q

Note: B  = Button

Light

D Q LIGHTBUTTON
CLK

0

1

Register
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Example: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

BUTTON=1

D Q LIGHTBUTTON
CLK

0

1

Combinational logic

Register

• Logic diagram
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Clocked circuit for on/off button

output light;  reg light;
always @ (posedge clk)  begin
if (button) light <= ~light;

module onoff(clk,button,light);  
input clk,button;

end  
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

SUNY – New Paltz
Elect. & Comp.  Eng. 

Clocked circuit for on/off button

output light;  reg light;
always @ (posedge clk)  begin
if (button) light <= ~light;

module onoff(clk,button,light);  
input clk,button;

end  
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work  
with a 1Mhz  
CLK?
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Example: 4-bit Counter

+1

clk

count
44

• Logic diagram

# 4-bit counter
module counter(clk, count);  
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= count+1;

End
endmodule

• Verilog

SUNY – New Paltz
Elect. & Comp.  Eng. 

Example: 4-bit Counter

1

0

+1

enb clk

count
44

• Logic diagram

# 4-bit counter with enable  
module counter(clk,enb,count);
input clk,enb;  
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= enb ? count+1 : count;

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

end
endmodule
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Example: 4-bit Counter

0 1
1   

0
0

+1

enb clr clk

count
44

• Logic diagram

# 4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);  
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @(posedge clk) begin
count <= clr ? 4’b0 : (enb ? count+1 : count);  

end
endmodule

• Verilog

SUNY – New Paltz
Elect. & Comp.  Eng. 

4-bit Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);  
input CLK, RESET, SI;
output [3:0] Q;  
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET)  begin
if (RESET)
Q <= 4'b0000;

else
Q <= {Q[2:0], SI};
end

endmodule
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4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;  
output CO;
reg [3:0] Q;
assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;  
always@(posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 4'b0000;
else if (EN)
Q <= Q + 4'b0001;
end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Sequence Detector

 Circuit specification:
Design a circuit that outputs a 1 when three consecutive  1’s have been 

received as input and 0 otherwise.

 FSM type
Moore or Mealy FSM?
 » Both possible
 » Chose Moore to simplify diagram
 State diagram:
 » State S0: zero 1s detected
 » State S1: one 1 detected
 » State S2: two 1s detected
 » State S3: three 1s detected
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Sequence Detector: Verilog (Moore FSM)
module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection

input x, clk;
output y;
reg [1:0] state;
parameter S0=2'b00, S1=2'b01, S2=2'b10,  S3=2'b11;

// Define the sequential block  
always @(posedge clk)

case (state)
S0: if (x) state <= S1;

else state <= S0;
S1: if (x) state <= S2;

else state <= S0;
S2: if (x) state <= S3;

else state <= S0;
S3: if (x) state <= S3;

else state <= S0;
endcase

// Define output during S3  
assign y = (state == S3);
endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Sequence Detector: Verilog (Mealy FSM)
module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection  
input x, clk;
output y;  reg y;
parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11;
// Next state and output combinational logic
// Use blocking assignments "="  
always @(x or pstate)
case (pstate)
S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end
S1: if (x) begin nstate = S2; y = 0; end

else begin nstate = S0; y = 0; end
S2: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
S3: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
endcase

// Sequential logic, use nonblocking assignments "<="  
always @(posedge clk)

pstate <= nstate;
endmodule

S1

S2S3

0/0 1/0

1/1

0/0
0/0

1/1

0/0

S0    1/0
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Verilog 
Operator

Name Functional 
Group

[ ] bit-select or part-
select

( ) parenthesis

!
~
&
|

~&
~|
^

~^ or ^~

logical negation
negation
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR

logical
bit-wise

reduction
reduction
reduction
reduction
reduction
reduction

+
-

unary (sign) plus
unary (sign) minus

arithmetic
arithmetic

{ } concatenation concatenation

{{ }} replication replication

*
/
%

multiply
divide
modulus

arithmetic
arithmetic
arithmetic

Verilog 
Operator

Name Functional 
Group

+
-

binary plus
binary minus

arithmetic
arithmetic

<<
>>

shift left
shift right

shift
shift

>
>=
<

<=

greater than
greater than or equal 
to
less than
less than or equal to

relational
relational
relational
relational

==
!=

case equality
case inequality

equality
equality

&
^
|

bit-wise AND
bit-wise XOR
bit-wise OR

bit-wise
bit-wise
bit-wise

&&
||

logical AND
logical OR

logical
logical

?: conditional conditional

SUNY – New Paltz
Elect. & Comp.  Eng. 

Testing a Verilog Model
 A model has to be tested and validated before it can be 

successfully used. 

 A test bench is a piece of Verilog code that can provide input 
combinations to test a Verilog model for the system under 
test.

 Test benches are frequently used during simulation to 
provide sequences of inputs to the circuit or Verilog model 
under test. 
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Testbench for the Structural Model of the 
Two-Bit Greater-Than Comparator
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Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)
input A, B, C;
output D, E;
wire  w1;
and # (30) G1 (w1, A, B);
not #10 G2 (E, C);
or #(20) G3 (D, w1, E);
endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Testing a Verilog Model (continued)
 Test bench for testing a 4-bit binary adder:
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Interaction between stimulus 
and design modules

SUNY – New Paltz
Elect. & Comp.  Eng. 

Arithmetic in Verilog
module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5);

input [2:0] A, B;

output [3:0] Y1;

output [4:0] Y3;

output [2:0] Y2, Y4, Y5;

reg [3:0] Y1;

reg [4:0] Y3;

reg [2:0] Y2, Y4, Y5;

always @(A or B)

begin

Y1=A+B;//addition

Y2=A-B;//subtraction

Y3=A*B;//multiplication

Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end

endmodule
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Equality and inequality Operations in Verilog
module Equality (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output Y1, Y2;

output [2:0] Y3;

reg Y1, Y2;

reg [2:0] Y3;

always @(A or B)

begin

Y1=A==B;//Y1=1 if A equivalent to B

Y2=A!=B;//Y2=1 if A not equivalent to B

if (A==B)//parenthesis needed

Y3=A;

else

Y3=B;

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Logical Operations in Verilog
module Logical (A, B, C, D, E, F, Y);

input [2:0] A, B, C, D, E, F;

output Y;

reg Y;

always @(A or B or C or D or E or F)

begin

if ((A==B) && ((C>D) || !(E<F)))

Y=1;

else

Y=0;

end

endmodule
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Bit-wise Operations in Verilog
module Bitwise (A, B, Y);

input [6:0] A;

input [5:0] B;

output [6:0] Y;

reg [6:0] Y;

always @(A or B)

begin

Y[0]=A[0]&B[0]; //binary AND

Y[1]=A[1]|B[1]; //binary OR

Y[2]=!(A[2]&B[2]); //negated AND

Y[3]=!(A[3]|B[3]); //negated OR

Y[4]=A[4]^B[4]; //binary XOR

Y[5]=A[5]~^B[5]; //binary XNOR

Y[6]=!A[6]; //unary negation

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

. Concatenation and Replication in Verilog
 The concatenation operator "{ , }" combines (concatenates) the bits 

of two or more data objects. The objects may be scalar (single bit) or 
vectored (multiple bit). Multiple concatenations may be performed 
with a constant prefix and is known as replication.

module Concatenation (A, B, Y);

input [2:0] A, B;

output [14:0] Y;

parameter C=3'b011;

reg [14:0] Y;

always @(A or B)

begin

Y={A, B, {2{C}}, 3'b110};

end

endmodule
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Shift Operations in Verilog

module Shift (A, Y1, Y2);

input [7:0] A;

output [7:0] Y1, Y2;

parameter B=3; reg [7:0] Y1, Y2;

always @(A)

begin

Y1=A<<B; //logical shift left

Y2=A>>B; //logical shift right

end

endmodule

SUNY – New Paltz
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Conditional Operations in Verilog

module Conditional (Time, Y);

input [2:0] Time;

output [2:0] Y;

reg [2:0] Y;

parameter Zero =3b'000;

parameter TimeOut = 3b'110;

always @(Time)

begin

Y=(Time!=TimeOut) ? Time +1 : Zero;

end

endmodule
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Reduction Operations in Verilog
module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6);

input [3:0] A;

output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1, Y2, Y3, Y4, Y5, Y6;

always @(A)

begin

Y1=&A; //reduction AND

Y2=|A; //reduction OR

Y3=~&A; //reduction NAND

Y4=~|A; //reduction NOR

Y5=^A; //reduction XOR

Y6=~^A; //reduction XNOR

end

endmodule


