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Computer-Aided Design (CAD)

 Steps in modern digital system design:
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CAD (continued)
 Target technologies that are available:

 Most common: field programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs).

SUNY – New Paltz
Elect. & Comp.  Eng. 

Hardware Description Languages 
(HDLs)
 HDLs can describe a digital system at several different 

levels—behavioral, data flow, and structural.

 HDLs lead naturally to a top-down design methodology.

 Two popular HDLs—VHDL and Verilog.

 Verilog is a HDL used to describe the behavior and / or 
structure of digital systems.
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Compilation, Simulation, and Synthesis of 
Verilog Code 

 Simulation and synthesis process:

 A netlist is a list of required components and their interconnections.

SUNY – New Paltz
Elect. & Comp.  Eng. 

Basic Verilog
 Lexical Convention

 Lexical convention are close to C++.

 Comment
 // to the end of the line.
 /* to */ across several lines

 Keywords are lower case letter & it is case sensitive

 VERILOG uses 4 valued logic: 0, 1, x and z

 Comments: // Verilog code for AND-OR-INVERT gate
module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

…

<functionality_of_module>

…

endmodule
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Behavioral and Structural Verilog
 Any circuit or device can be represented in multiple forms of 

abstraction. 

 Example:

SUNY – New Paltz
Elect. & Comp.  Eng. 

Behavioral and Structural Verilog
(continued)
 3 Models:
 Structural: 
 Specifies more details.

 Components used and the structure of the interconnection between the 
components are clearly specified.

 At a low level of abstraction.

 Data Flow (Register Transfer Language):
 Data path and control signals are specified.

 System is described in terms of the data transfer between registers.

 Behavioral:
 Specifies only the behavior at a higher level of abstraction.

 Does not imply any particular structure or technology. 
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Module portsModule name

Verilog keywords

Taste of Verilog

module Add_half ( sum, c_out, a, b );
input
output
wire

a, b;
sum, c_out;  
c_out_bar;

xor (sum, a, b);
// xor G1(sum, a, b);
nand (c_out_bar, a, b);
not (c_out, c_out_bar);

endmodule

Declaration of port  
modes

Declaration of internal  
signal

c_out

a
b sum

c_out_bar

Instantiation of primitive  
gates

G1

SUNY – New Paltz
Elect. & Comp.  Eng. 

Lexical Convention
• Numbers are specified in the 

traditional form  or below .
<size><base format><number>

• Size: contains decimal digitals 
that specify the  size of the 
constant in the number of bits.

• Base format: is the single 
character ‘ followed  by one of 
the following characters  
b(binary),d(decimal),o(octal),h(hex).

• Number: legal digital.

Example :
• 347 -- decimal number
• 4’b101 -- 4- bit 01012

• 2’o12 -- 2-bit octal number
• 5’h87f7 -- 5-digit 87F716

• 2’d83 -- 2-digit decimal
• String in double quotes

“ this is a introduction”



EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 6

SUNY – New Paltz
Elect. & Comp.  Eng. 

Three Modeling Styles in Verilog

 Structural modeling (Gate-level)
 Use predefined or user-defined primitive gates.

 Dataflow modeling
 Use assignment statements (assign)

 Behavioral modeling
 Use procedural assignment statements (always)

SUNY – New Paltz
Elect. & Comp.  Eng. 

Structural Verilog Description of Two-Bit 
Greater-Than Circuit
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Dissection

 Module and Port declarations
 Verilog-2001 syntax
 module AOI (input A, B, C, D, output F);

 Verilog-1995 syntax
module AOI (A, B, C, D, F);

input A, B, C, D;
output F;

 Wires: Continuous assignment to an internal signal

SUNY – New Paltz
Elect. & Comp.  Eng. 

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

wire F;  // the default

wire AB, CD, O;  // necessary

assign AB = A & B;

assign CD = C & D;

assign O = AB | CD;

assign F = ~O;

endmodule

// end of Verilog code

Continuous Assignments
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A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for  AND, ‘|’ for OR, ‘^’ for XOR ‘^~’ for XNOR, ‘&~’ for NAND

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Verilog Description of Two-Bit 
Greater-Than Comparator
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Conditional Dataflow Verilog Description 
of Two-Bit Greater-Than Circuit

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Description of Two-Bit Greater-
Than Circuit
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A Design Hierarchy
 Module Instances

 MUX_2 module contains references to 
each of the lower level modules

// Verilog code for 2-input multiplexer

module MUX2 (input SEL, A, B, output F);      
// 2:1 multiplexer

// wires SELB and FB are implicit

// Module instances...

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (.A(FB), .F(F));    // Named mapping

endmodule

// end of Verilog code

// Verilog code for 2-input multiplexer
module INV (input A, output F);   // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

F = (SEL)’. A + (SEL).B
SELB = (SEL)’
F=(SELB).A + (SEL).B
1. Invert SEL and get SELB 
2. Use AOI and get F’
3. Invert F’ and get F

SUNY – New Paltz
Elect. & Comp.  Eng. 

Another Example
module decoder (A,B, D0,D1,D2,D3);

input A,B;

output D0,D1,D2,D3;

assign  D0 = ~A&~B;

assign  D1 = ~A&B;

assign  D2 = A&~B;

assign  D3 = A&B;

endmodule
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Hierarchical representation of Adder 
module fulladder (A,B,CIN, S,COUT);

input A,B,CIN;

output S,COUT;

assign S = A ^ B ^ CIN;

assign COUT = (A & B) |(A & CIN) 
| (B & CIN);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0, S3,S2,S1,S0,COUT);

input  CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0;

output  S3, S2, S1, S0, COUT;

wire C1, C2, C3;

fulladder FA0 (X0, Y0, CIN, S0, C1);

fulladder FA1 (X1, Y1, C1, S1, C2);

fulladder FA2 (X2, Y2, C2, S2, C3);

fulladder FA3 (X3, Y3, C3, S3, COUT);

endmodule
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module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire  [4:0] C;

full _adder  FA0 (B(0), A(0), C(0), S(0), C(1));

full _adder  FA1 (B(1), A(1), C(1), S(1), C(2));

full _adder  FA2 (B(2), A(2), C(2), S(2), C(3));

full _adder  FA3 (B(3), A(3), C(3), S(3), C(4));

assign C(0) = CIN;

assign COUT = C(4);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)

 Gate instantiations
 and (z, x, y), or (c, a, b), xor (S, x, y), etc.

 Continuous assignments
 assign Z = x & y; c = a | b; S = x ^ y

2. Procedural statements (sequential)
(executed in the order written in the code)

 always @ - executed continuously when the event is active
 Initial - executed only once (used in simulation)
 if then else statements
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Behavioral Description

module Add_half ( sum, c_out, a, b );
input  
output

a, b;
sum, c_out;

// Exclusive or
// And

reg sum, c_out;
always @ ( a or b )

begin
sum = a ^ b;  
c_out = a & b;

end  
endmodule

b
Add_halfa su

c_

m  

out

Event control  
expression or 
sensitivity listProcedure  

assignment  
statements

Must be of the  
‘reg’ type

SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Statement

 Conditional_expression ? true_expression : false expression;

Example:
 Assign A = (B<C) ? (D+5) : (D+2);
 if B is less than C, the value of A will be D + 5, or else A will have the 

value D + 2.  

 An if-else statement is a procedural statement.
//Behavioral specification

module mux2to1 (w0, w1, s, F);

input wo,w1,s;

output F;

reg F;

always @ (w0,w1,s)
if (s==1) F = w1;
else F = w0;
endmodule

sensitivity list

always @ (w0,w1,s)
F = s ? w1: w2;
endmodule
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Mux 4-to-1
module mux4to1 (w0, w1,w2, w3, S, F);

input w0,w1,w2,w3,[1:0] S;

output F;

reg F;

always @ (w0,w1,w2,w3,S)

if (S==0) F = w0;

else if (S==1) F = w1;

else if (S==2) F = w2;

else F = w3;

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Boolean Operators in Verilog
Verilog Operator Name Functional Group

>   >=   <   <=

greater than greater 
than or equal to less 
than less than or equal 
to

relational

==   !=
case equality case 
inequality

equality 

&   ^   |
bit-wise AND bit-wise 
XOR bit-wise OR

bit-wise bit-wise

&&    ||
logical AND logical 
OR

logical
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Another Example

//Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);

input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Modeling

//Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

concatenation Binary addition
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Design of an ALU using Case 
Statement

// 74381 ALU 
module alu(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F; 
always @(s or A or B) 
case (s) 
0: F = 4'b0000; 
1: F = B - A; 
2: F = A - B; 
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule

S Function

0 Clear

1 B-A 

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
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// 74381 ALU 
module VALU(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F;
always @(s or A or B) 
case (s)
0: F = 4'b0000;
1: F = B - A;
2: F = A - B;
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule <#>
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Golden Rules 
 Golden Rule 1:

To synthesize combinational logic using an always block, all 
inputs to the design must appear in the sensitivity list.

 Golden Rule 2:

To synthesize combinational logic using an always block, all 
variables must be assigned under all conditions.

SUNY – New Paltz
Elect. & Comp.  Eng. 

Golden Rules 

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f = a;

end

• What if sel = 0?
• Keep the current value

• Undesired functionality 
• Unintended latch

• Need to include else

reg f;
always @ (sel, a, b)
begin :
if (sel == 1)
f = a;

else
f = b;

end

• Proper as intended

Reg f;
always @ (sel, a, b)
begin f = b;

if (sel == 1)
f = a;

end

• Setting variables 
to default values 
at the start of the 
always block

• OK as well!
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1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c  but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all  right-hand 
sides have been evaluated (end of simulation  timestep)

• Sometimes, as above, both produce the same result.  Sometimes, not!

 Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

 Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)  
begin
x = a | b; 1. Evaluate a | b, assign result to x

y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)  
begin

x.<= a | b;
y.<= a ^ b ^ c;  
z <= b & ~c;

end 4. Assign x, y, and z with their new values

SUNY – New Paltz
Elect. & Comp.  Eng. 

Blocking vs. Nonblocking Assignments
 The = token represents a blocking blocking procedural assignment
 Evaluated and assigned in a single step 
 Execution flow within the procedure is blocked until the 

assignment is completed 

 The <= token represents a non-blocking assignment
 Evaluated and assigned in two steps: 

1. The right hand side is evaluated immediately 
2. The assignment to the left-hand side is postponed until other 

evaluations in the current time step are completed 

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] <= word[ 7:0]; 
word[ 7:0] <= word[15:8]; 
end

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] = word[ 7:0]; 
word[ 7:0] = word[15:8]; 
end
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Why two ways of assigning values?
Conceptual need for two kinds of assignment (in always blocks):

a  

b

a  
b

c

x  

y

Blocking:
Evaluation and assignment  
are immediate

a = b  
b = a

x = a & b  
y = x | c

Non-Blocking: a <= b
Assignment is postponed until
all r.h.s. evaluations are done b <= a

x <= a & b  
y <= x | c

When to use:
( only in always blocks! )

Sequential  
Circuits

Combinational  
Circuits

SUNY – New Paltz
Elect. & Comp.  Eng. 

Assignment Styles for Sequential
Logic

• Will nonblocking and blocking assignments both  
produce the desired result?

module nonblocking(in, clk, out);  
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)  
begin

q1 <= in;  
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based  
Digital Delay  

Line

module blocking(in, clk, out);  
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 = in;  
q2 = q1;
out = q2;

end

endmodule
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Use Nonblocking for Sequential
Logic

D Q D Qin out
q1 q2

D Q

q1 <= in;  
q2 <= q1;
out <= q2;

end

“At each rising clock edge, q1, q2, and  
out simultaneously receive the old values  

of in, q1, and q2.”

always @ (posedge clk) always @ (posedge clk) 
begin begin

q1 = in;  
q2 = q1;
out = q2;

end

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in; After that,
out = q2 = q1 = in; Finally out = in.”

clk

• Blocking assignments do not reflect the intrinsic behavior of  
multi-stage sequential logic

• Guideline: use nonblocking assignments for  
sequential always blocks

in out

clk

D Q
q1 q2

SUNY – New Paltz
Elect. & Comp.  Eng. 

Use Blocking for Combinational
Logic

• Guideline: use blocking assignments for  
combinational always blocks

Bl

No

always @ (a or b or c)  
begin

x.<= a & b;
y.<= x | c;  
end

• Nonblocking assignments do not reflect the intrinsic behavior of  
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly  
(expand the sensitivity list), it’s not elegant

always @ (a or b or c)
begin
x = a & b;
y = x | c;

end
a  
b

c

x  

y

ocking Behavior a b c  xy

(Given) Initial Condition 1 1 0  1 1
a changes;
alwaysblock triggered 0 1 0  1 1

x = a & b; 0 1 0  0 1
y = x | c; 0 1 0  0 0

nblocking Behavior a b c  xy Deferred

(Given) Initial Condition 1 1 0  1 1
a changes;
alwaysblock triggered

0 1 0  1 1

x <= a & b; 0 1 0  1 1 x<=0
y <= x | c; 0 1 0  1 1 x<=0, y<=1
Assignment completion 0 1 0  0 1
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Propagation Delay for an Inverter

SUNY – New Paltz
Elect. & Comp.  Eng. 

Single-clock Synchronous Circuits

We’ll use Flip Flops and Registers – groups of FFs sharing a clock input – in a  

highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

• No combinational cycles

• Single clock signal shared 

among  all clocked devices

• Only care about value of  

combinational circuits just  

before rising edge of clock

• Period greater than every  

combinational delay

• Change saved state after 

noise- inducing logic 

transitions have  stopped!
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Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee  
setup and hold  
times will be met!

When an asynchronous signal causes a setup/hold  
violation...

Q  

D

Clock

Transition is missed on  
first clock cycle, but  
caught on next clock  
cycle.

Transition is caught on  
first clock cycle.

?

I II III

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

SUNY – New Paltz
Elect. & Comp.  Eng. 

Asynchronous Inputs in Sequential Systems

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places  
in the circuit, but what about metastability?

D  Q

D  Q

Q0

Clock

Clock

Q1

Async  
Input

All of them can be, if more than one happens  
simultaneously within the same circuit.

Idea: ensure that external signals directly feed  
exactly one flip-flop

Clocked  
Synchronous

System
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Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable  

conditions will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In above, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic  
System

Clock

D Q D Q

Can be  
metastable  
right after  
sampling

Very unlikely to be  
metastable for >1  
clock cycle

Extremely unlikely to  
be metastable for >2  
clock cycle

SUNY – New Paltz
Elect. & Comp.  Eng. 

Finite  State Machines (FSM)
 State diagrams are  representations of Finite  State Machines (FSM)

 Mealy FSM
 Output depends on input and  state
 Output is not synchronized  with clock
 can have temporarily  unstable output

 Moore FSM
 Output depends only on state

25

Mealy  
FSM

Moore  
FSM
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Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for  sequential 
circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational  
Logic

Flip-
Flops

Q D

CLK

inputs

+

present  
state

outputs

+

next  
state

n n

SUNY – New Paltz
Elect. & Comp.  Eng. 

Two Types of FSMs

outputs
yk = fk(S)

inputs
x0...xn

Comb.  
Logic

n

Flip-
Flops

Comb.  
Logic

D Q
n

CLK

Moore and Mealy FSMs : different output generation

• Moore FSM:
next  
state

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.  
Logic

CLK

Flip-
Flops

Comb.  
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!
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Example: Light Switch

0/LIGHT
= 0

1/LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram
BUTTON=1

PS NS
Q Butto

n
Q & D Light

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

D         Q   

Q

Q

Button

D = Q’B + QB’
Light = Q

Note: B  = Button

Light

D Q LIGHTBUTTON
CLK

0

1

Register

SUNY – New Paltz
Elect. & Comp.  Eng. 

Example: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

BUTTON=1

D Q LIGHTBUTTON
CLK

0

1

Combinational logic

Register

• Logic diagram
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Clocked circuit for on/off button

output light;  reg light;
always @ (posedge clk)  begin
if (button) light <= ~light;

module onoff(clk,button,light);  
input clk,button;

end  
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK
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Clocked circuit for on/off button

output light;  reg light;
always @ (posedge clk)  begin
if (button) light <= ~light;

module onoff(clk,button,light);  
input clk,button;

end  
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work  
with a 1Mhz  
CLK?
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Example: 4-bit Counter

+1

clk

count
44

• Logic diagram

# 4-bit counter
module counter(clk, count);  
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= count+1;

End
endmodule

• Verilog

SUNY – New Paltz
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Example: 4-bit Counter

1

0

+1

enb clk

count
44

• Logic diagram

# 4-bit counter with enable  
module counter(clk,enb,count);
input clk,enb;  
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= enb ? count+1 : count;

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

end
endmodule
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Example: 4-bit Counter

0 1
1   

0
0

+1

enb clr clk

count
44

• Logic diagram

# 4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);  
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @(posedge clk) begin
count <= clr ? 4’b0 : (enb ? count+1 : count);  

end
endmodule

• Verilog

SUNY – New Paltz
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4-bit Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);  
input CLK, RESET, SI;
output [3:0] Q;  
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET)  begin
if (RESET)
Q <= 4'b0000;

else
Q <= {Q[2:0], SI};
end

endmodule
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4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;  
output CO;
reg [3:0] Q;
assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;  
always@(posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 4'b0000;
else if (EN)
Q <= Q + 4'b0001;
end

endmodule

SUNY – New Paltz
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Sequence Detector

 Circuit specification:
Design a circuit that outputs a 1 when three consecutive  1’s have been 

received as input and 0 otherwise.

 FSM type
Moore or Mealy FSM?
 » Both possible
 » Chose Moore to simplify diagram
 State diagram:
 » State S0: zero 1s detected
 » State S1: one 1 detected
 » State S2: two 1s detected
 » State S3: three 1s detected
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Sequence Detector: Verilog (Moore FSM)
module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection

input x, clk;
output y;
reg [1:0] state;
parameter S0=2'b00, S1=2'b01, S2=2'b10,  S3=2'b11;

// Define the sequential block  
always @(posedge clk)

case (state)
S0: if (x) state <= S1;

else state <= S0;
S1: if (x) state <= S2;

else state <= S0;
S2: if (x) state <= S3;

else state <= S0;
S3: if (x) state <= S3;

else state <= S0;
endcase

// Define output during S3  
assign y = (state == S3);
endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Sequence Detector: Verilog (Mealy FSM)
module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection  
input x, clk;
output y;  reg y;
parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11;
// Next state and output combinational logic
// Use blocking assignments "="  
always @(x or pstate)
case (pstate)
S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end
S1: if (x) begin nstate = S2; y = 0; end

else begin nstate = S0; y = 0; end
S2: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
S3: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
endcase

// Sequential logic, use nonblocking assignments "<="  
always @(posedge clk)

pstate <= nstate;
endmodule

S1

S2S3

0/0 1/0

1/1

0/0
0/0

1/1

0/0

S0    1/0
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Verilog 
Operator

Name Functional 
Group

[ ] bit-select or part-
select

( ) parenthesis

!
~
&
|

~&
~|
^

~^ or ^~

logical negation
negation
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR

logical
bit-wise

reduction
reduction
reduction
reduction
reduction
reduction

+
-

unary (sign) plus
unary (sign) minus

arithmetic
arithmetic

{ } concatenation concatenation

{{ }} replication replication

*
/
%

multiply
divide
modulus

arithmetic
arithmetic
arithmetic

Verilog 
Operator

Name Functional 
Group

+
-

binary plus
binary minus

arithmetic
arithmetic

<<
>>

shift left
shift right

shift
shift

>
>=
<

<=

greater than
greater than or equal 
to
less than
less than or equal to

relational
relational
relational
relational

==
!=

case equality
case inequality

equality
equality

&
^
|

bit-wise AND
bit-wise XOR
bit-wise OR

bit-wise
bit-wise
bit-wise

&&
||

logical AND
logical OR

logical
logical

?: conditional conditional

SUNY – New Paltz
Elect. & Comp.  Eng. 

Testing a Verilog Model
 A model has to be tested and validated before it can be 

successfully used. 

 A test bench is a piece of Verilog code that can provide input 
combinations to test a Verilog model for the system under 
test.

 Test benches are frequently used during simulation to 
provide sequences of inputs to the circuit or Verilog model 
under test. 
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Testbench for the Structural Model of the 
Two-Bit Greater-Than Comparator



EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 33

SUNY – New Paltz
Elect. & Comp.  Eng. 

Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)
input A, B, C;
output D, E;
wire  w1;
and # (30) G1 (w1, A, B);
not #10 G2 (E, C);
or #(20) G3 (D, w1, E);
endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Testing a Verilog Model (continued)
 Test bench for testing a 4-bit binary adder:
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Interaction between stimulus 
and design modules

SUNY – New Paltz
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Arithmetic in Verilog
module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5);

input [2:0] A, B;

output [3:0] Y1;

output [4:0] Y3;

output [2:0] Y2, Y4, Y5;

reg [3:0] Y1;

reg [4:0] Y3;

reg [2:0] Y2, Y4, Y5;

always @(A or B)

begin

Y1=A+B;//addition

Y2=A-B;//subtraction

Y3=A*B;//multiplication

Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end

endmodule
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Equality and inequality Operations in Verilog
module Equality (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output Y1, Y2;

output [2:0] Y3;

reg Y1, Y2;

reg [2:0] Y3;

always @(A or B)

begin

Y1=A==B;//Y1=1 if A equivalent to B

Y2=A!=B;//Y2=1 if A not equivalent to B

if (A==B)//parenthesis needed

Y3=A;

else

Y3=B;

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Logical Operations in Verilog
module Logical (A, B, C, D, E, F, Y);

input [2:0] A, B, C, D, E, F;

output Y;

reg Y;

always @(A or B or C or D or E or F)

begin

if ((A==B) && ((C>D) || !(E<F)))

Y=1;

else

Y=0;

end

endmodule



EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 36

SUNY – New Paltz
Elect. & Comp.  Eng. 

Bit-wise Operations in Verilog
module Bitwise (A, B, Y);

input [6:0] A;

input [5:0] B;

output [6:0] Y;

reg [6:0] Y;

always @(A or B)

begin

Y[0]=A[0]&B[0]; //binary AND

Y[1]=A[1]|B[1]; //binary OR

Y[2]=!(A[2]&B[2]); //negated AND

Y[3]=!(A[3]|B[3]); //negated OR

Y[4]=A[4]^B[4]; //binary XOR

Y[5]=A[5]~^B[5]; //binary XNOR

Y[6]=!A[6]; //unary negation

end

endmodule

SUNY – New Paltz
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. Concatenation and Replication in Verilog
 The concatenation operator "{ , }" combines (concatenates) the bits 

of two or more data objects. The objects may be scalar (single bit) or 
vectored (multiple bit). Multiple concatenations may be performed 
with a constant prefix and is known as replication.

module Concatenation (A, B, Y);

input [2:0] A, B;

output [14:0] Y;

parameter C=3'b011;

reg [14:0] Y;

always @(A or B)

begin

Y={A, B, {2{C}}, 3'b110};

end

endmodule
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Shift Operations in Verilog

module Shift (A, Y1, Y2);

input [7:0] A;

output [7:0] Y1, Y2;

parameter B=3; reg [7:0] Y1, Y2;

always @(A)

begin

Y1=A<<B; //logical shift left

Y2=A>>B; //logical shift right

end

endmodule

SUNY – New Paltz
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Conditional Operations in Verilog

module Conditional (Time, Y);

input [2:0] Time;

output [2:0] Y;

reg [2:0] Y;

parameter Zero =3b'000;

parameter TimeOut = 3b'110;

always @(Time)

begin

Y=(Time!=TimeOut) ? Time +1 : Zero;

end

endmodule
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Reduction Operations in Verilog
module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6);

input [3:0] A;

output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1, Y2, Y3, Y4, Y5, Y6;

always @(A)

begin

Y1=&A; //reduction AND

Y2=|A; //reduction OR

Y3=~&A; //reduction NAND

Y4=~|A; //reduction NOR

Y5=^A; //reduction XOR

Y6=~^A; //reduction XNOR

end

endmodule


