
EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 1

EGC 455

Design &Verification of SOC

Design Using Verilog - I

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

SUNY – New Paltz
Elect. & Comp. Eng.

Computer-Aided Design (CAD)

 Steps in modern digital system design:

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 2

SUNY – New Paltz
Elect. & Comp. Eng.

CAD (continued)
 Target technologies that are available:

 Most common: field programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs).

SUNY – New Paltz
Elect. & Comp. Eng.

Hardware Description Languages
(HDLs)
 HDLs can describe a digital system at several different

levels—behavioral, data flow, and structural.

 HDLs lead naturally to a top-down design methodology.

 Two popular HDLs—VHDL and Verilog.

 Verilog is a HDL used to describe the behavior and / or
structure of digital systems.

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 3

SUNY – New Paltz
Elect. & Comp. Eng.

Compilation, Simulation, and Synthesis of
Verilog Code

 Simulation and synthesis process:

 A netlist is a list of required components and their interconnections.

SUNY – New Paltz
Elect. & Comp. Eng.

Basic Verilog
 Lexical Convention

 Lexical convention are close to C++.

 Comment
 // to the end of the line.
 /* to */ across several lines

 Keywords are lower case letter & it is case sensitive

 VERILOG uses 4 valued logic: 0, 1, x and z

 Comments: // Verilog code for AND-OR-INVERT gate
module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

…

<functionality_of_module>

…

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 4

SUNY – New Paltz
Elect. & Comp. Eng.

Behavioral and Structural Verilog
 Any circuit or device can be represented in multiple forms of

abstraction.

 Example:

SUNY – New Paltz
Elect. & Comp. Eng.

Behavioral and Structural Verilog
(continued)
 3 Models:
 Structural:
 Specifies more details.

 Components used and the structure of the interconnection between the
components are clearly specified.

 At a low level of abstraction.

 Data Flow (Register Transfer Language):
 Data path and control signals are specified.

 System is described in terms of the data transfer between registers.

 Behavioral:
 Specifies only the behavior at a higher level of abstraction.

 Does not imply any particular structure or technology.

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 5

SUNY – New Paltz
Elect. & Comp. Eng.

Module portsModule name

Verilog keywords

Taste of Verilog

module Add_half (sum, c_out, a, b);
input
output
wire

a, b;
sum, c_out;
c_out_bar;

xor (sum, a, b);
// xor G1(sum, a, b);
nand (c_out_bar, a, b);
not (c_out, c_out_bar);

endmodule

Declaration of port
modes

Declaration of internal
signal

c_out

a
b sum

c_out_bar

Instantiation of primitive
gates

G1

SUNY – New Paltz
Elect. & Comp. Eng.

Lexical Convention
• Numbers are specified in the

traditional form or below .
<size><base format><number>

• Size: contains decimal digitals
that specify the size of the
constant in the number of bits.

• Base format: is the single
character ‘ followed by one of
the following characters
b(binary),d(decimal),o(octal),h(hex).

• Number: legal digital.

Example :
• 347 -- decimal number
• 4’b101 -- 4- bit 01012

• 2’o12 -- 2-bit octal number
• 5’h87f7 -- 5-digit 87F716

• 2’d83 -- 2-digit decimal
• String in double quotes

“ this is a introduction”

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 6

SUNY – New Paltz
Elect. & Comp. Eng.

Three Modeling Styles in Verilog

 Structural modeling (Gate-level)
 Use predefined or user-defined primitive gates.

 Dataflow modeling
 Use assignment statements (assign)

 Behavioral modeling
 Use procedural assignment statements (always)

SUNY – New Paltz
Elect. & Comp. Eng.

Structural Verilog Description of Two-Bit
Greater-Than Circuit

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 7

SUNY – New Paltz
Elect. & Comp. Eng.

Dissection

 Module and Port declarations
 Verilog-2001 syntax
 module AOI (input A, B, C, D, output F);

 Verilog-1995 syntax
module AOI (A, B, C, D, F);

input A, B, C, D;
output F;

 Wires: Continuous assignment to an internal signal

SUNY – New Paltz
Elect. & Comp. Eng.

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

wire F; // the default

wire AB, CD, O; // necessary

assign AB = A & B;

assign CD = C & D;

assign O = AB | CD;

assign F = ~O;

endmodule

// end of Verilog code

Continuous Assignments

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 8

SUNY – New Paltz
Elect. & Comp. Eng.

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for AND, ‘|’ for OR, ‘^’ for XOR ‘^~’ for XNOR, ‘&~’ for NAND

SUNY – New Paltz
Elect. & Comp. Eng.

Dataflow Verilog Description of Two-Bit
Greater-Than Comparator

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 9

SUNY – New Paltz
Elect. & Comp. Eng.

Conditional Dataflow Verilog Description
of Two-Bit Greater-Than Circuit

SUNY – New Paltz
Elect. & Comp. Eng.

Verilog Description of Two-Bit Greater-
Than Circuit

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 10

SUNY – New Paltz
Elect. & Comp. Eng.

A Design Hierarchy
 Module Instances

 MUX_2 module contains references to
each of the lower level modules

// Verilog code for 2-input multiplexer

module MUX2 (input SEL, A, B, output F);
// 2:1 multiplexer

// wires SELB and FB are implicit

// Module instances...

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (.A(FB), .F(F)); // Named mapping

endmodule

// end of Verilog code

// Verilog code for 2-input multiplexer
module INV (input A, output F); // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

F = (SEL)’. A + (SEL).B
SELB = (SEL)’
F=(SELB).A + (SEL).B
1. Invert SEL and get SELB
2. Use AOI and get F’
3. Invert F’ and get F

SUNY – New Paltz
Elect. & Comp. Eng.

Another Example
module decoder (A,B, D0,D1,D2,D3);

input A,B;

output D0,D1,D2,D3;

assign D0 = ~A&~B;

assign D1 = ~A&B;

assign D2 = A&~B;

assign D3 = A&B;

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 11

SUNY – New Paltz
Elect. & Comp. Eng.

Hierarchical representation of Adder
module fulladder (A,B,CIN, S,COUT);

input A,B,CIN;

output S,COUT;

assign S = A ^ B ^ CIN;

assign COUT = (A & B) |(A & CIN)
| (B & CIN);

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0, S3,S2,S1,S0,COUT);

input CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0;

output S3, S2, S1, S0, COUT;

wire C1, C2, C3;

fulladder FA0 (X0, Y0, CIN, S0, C1);

fulladder FA1 (X1, Y1, C1, S1, C2);

fulladder FA2 (X2, Y2, C2, S2, C3);

fulladder FA3 (X3, Y3, C3, S3, COUT);

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 12

SUNY – New Paltz
Elect. & Comp. Eng.

module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire [4:0] C;

full _adder FA0 (B(0), A(0), C(0), S(0), C(1));

full _adder FA1 (B(1), A(1), C(1), S(1), C(2));

full _adder FA2 (B(2), A(2), C(2), S(2), C(3));

full _adder FA3 (B(3), A(3), C(3), S(3), C(4));

assign C(0) = CIN;

assign COUT = C(4);

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)

 Gate instantiations
 and (z, x, y), or (c, a, b), xor (S, x, y), etc.

 Continuous assignments
 assign Z = x & y; c = a | b; S = x ^ y

2. Procedural statements (sequential)
(executed in the order written in the code)

 always @ - executed continuously when the event is active
 Initial - executed only once (used in simulation)
 if then else statements

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 13

SUNY – New Paltz
Elect. & Comp. Eng.

Behavioral Description

module Add_half (sum, c_out, a, b);
input
output

a, b;
sum, c_out;

// Exclusive or
// And

reg sum, c_out;
always @ (a or b)

begin
sum = a ^ b;
c_out = a & b;

end
endmodule

b
Add_halfa su

c_

m

out

Event control
expression or
sensitivity listProcedure

assignment
statements

Must be of the
‘reg’ type

SUNY – New Paltz
Elect. & Comp. Eng.

Conditional Statement

 Conditional_expression ? true_expression : false expression;

Example:
 Assign A = (B<C) ? (D+5) : (D+2);
 if B is less than C, the value of A will be D + 5, or else A will have the

value D + 2.

 An if-else statement is a procedural statement.
//Behavioral specification

module mux2to1 (w0, w1, s, F);

input wo,w1,s;

output F;

reg F;

always @ (w0,w1,s)
if (s==1) F = w1;
else F = w0;
endmodule

sensitivity list

always @ (w0,w1,s)
F = s ? w1: w2;
endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 14

SUNY – New Paltz
Elect. & Comp. Eng.

Mux 4-to-1
module mux4to1 (w0, w1,w2, w3, S, F);

input w0,w1,w2,w3,[1:0] S;

output F;

reg F;

always @ (w0,w1,w2,w3,S)

if (S==0) F = w0;

else if (S==1) F = w1;

else if (S==2) F = w2;

else F = w3;

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Boolean Operators in Verilog
Verilog Operator Name Functional Group

> >= < <=

greater than greater
than or equal to less
than less than or equal
to

relational

== !=
case equality case
inequality

equality

& ^ |
bit-wise AND bit-wise
XOR bit-wise OR

bit-wise bit-wise

&& ||
logical AND logical
OR

logical

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 15

SUNY – New Paltz
Elect. & Comp. Eng.

Another Example

//Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);

input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Dataflow Modeling

//Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

concatenation Binary addition

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 16

SUNY – New Paltz
Elect. & Comp. Eng.

Design of an ALU using Case
Statement

// 74381 ALU
module alu(s, A, B, F);
input [2:0] s;
input [3:0] A, B;
output [3:0] F;
reg [3:0] F;
always @(s or A or B)
case (s)
0: F = 4'b0000;
1: F = B - A;
2: F = A - B;
3: F = A + B;
4: F = A ^ B;
5: F = A | B;
6: F = A & B;
7: F = 4'b1111;
endcase
endmodule

S Function

0 Clear

1 B-A

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

// 74381 ALU
module VALU(s, A, B, F);
input [2:0] s;
input [3:0] A, B;
output [3:0] F;
reg [3:0] F;
always @(s or A or B)
case (s)
0: F = 4'b0000;
1: F = B - A;
2: F = A - B;
3: F = A + B;
4: F = A ^ B;
5: F = A | B;
6: F = A & B;
7: F = 4'b1111;
endcase
endmodule <#>

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 17

SUNY – New Paltz
Elect. & Comp. Eng.

Golden Rules
 Golden Rule 1:

To synthesize combinational logic using an always block, all
inputs to the design must appear in the sensitivity list.

 Golden Rule 2:

To synthesize combinational logic using an always block, all
variables must be assigned under all conditions.

SUNY – New Paltz
Elect. & Comp. Eng.

Golden Rules

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f = a;

end

• What if sel = 0?
• Keep the current value

• Undesired functionality
• Unintended latch

• Need to include else

reg f;
always @ (sel, a, b)
begin :
if (sel == 1)
f = a;

else
f = b;

end

• Proper as intended

Reg f;
always @ (sel, a, b)
begin f = b;

if (sel == 1)
f = a;

end

• Setting variables
to default values
at the start of the
always block

• OK as well!

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 18

SUNY – New Paltz
Elect. & Comp. Eng.

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all right-hand
sides have been evaluated (end of simulation timestep)

• Sometimes, as above, both produce the same result. Sometimes, not!

 Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

 Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)
begin
x = a | b; 1. Evaluate a | b, assign result to x

y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)
begin

x.<= a | b;
y.<= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

SUNY – New Paltz
Elect. & Comp. Eng.

Blocking vs. Nonblocking Assignments
 The = token represents a blocking blocking procedural assignment
 Evaluated and assigned in a single step
 Execution flow within the procedure is blocked until the

assignment is completed

 The <= token represents a non-blocking assignment
 Evaluated and assigned in two steps:

1. The right hand side is evaluated immediately
2. The assignment to the left-hand side is postponed until other

evaluations in the current time step are completed

//swap bytes in word
always @(posedge clk)
begin
word[15:8] <= word[7:0];
word[7:0] <= word[15:8];
end

//swap bytes in word
always @(posedge clk)
begin
word[15:8] = word[7:0];
word[7:0] = word[15:8];
end

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 19

SUNY – New Paltz
Elect. & Comp. Eng.

Why two ways of assigning values?
Conceptual need for two kinds of assignment (in always blocks):

a

b

a
b

c

x

y

Blocking:
Evaluation and assignment
are immediate

a = b
b = a

x = a & b
y = x | c

Non-Blocking: a <= b
Assignment is postponed until
all r.h.s. evaluations are done b <= a

x <= a & b
y <= x | c

When to use:
(only in always blocks!)

Sequential
Circuits

Combinational
Circuits

SUNY – New Paltz
Elect. & Comp. Eng.

Assignment Styles for Sequential
Logic

• Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin

q1 <= in;
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based
Digital Delay

Line

module blocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 = in;
q2 = q1;
out = q2;

end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 20

SUNY – New Paltz
Elect. & Comp. Eng.

Use Nonblocking for Sequential
Logic

D Q D Qin out
q1 q2

D Q

q1 <= in;
q2 <= q1;
out <= q2;

end

“At each rising clock edge, q1, q2, and
out simultaneously receive the old values

of in, q1, and q2.”

always @ (posedge clk) always @ (posedge clk)
begin begin

q1 = in;
q2 = q1;
out = q2;

end

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in; After that,
out = q2 = q1 = in; Finally out = in.”

clk

• Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

• Guideline: use nonblocking assignments for
sequential always blocks

in out

clk

D Q
q1 q2

SUNY – New Paltz
Elect. & Comp. Eng.

Use Blocking for Combinational
Logic

• Guideline: use blocking assignments for
combinational always blocks

Bl

No

always @ (a or b or c)
begin

x.<= a & b;
y.<= x | c;
end

• Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it’s not elegant

always @ (a or b or c)
begin
x = a & b;
y = x | c;

end
a
b

c

x

y

ocking Behavior a b c xy

(Given) Initial Condition 1 1 0 1 1
a changes;
alwaysblock triggered 0 1 0 1 1

x = a & b; 0 1 0 0 1
y = x | c; 0 1 0 0 0

nblocking Behavior a b c xy Deferred

(Given) Initial Condition 1 1 0 1 1
a changes;
alwaysblock triggered

0 1 0 1 1

x <= a & b; 0 1 0 1 1 x<=0
y <= x | c; 0 1 0 1 1 x<=0, y<=1
Assignment completion 0 1 0 0 1

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 21

SUNY – New Paltz
Elect. & Comp. Eng.

Propagation Delay for an Inverter

SUNY – New Paltz
Elect. & Comp. Eng.

Single-clock Synchronous Circuits

We’ll use Flip Flops and Registers – groups of FFs sharing a clock input – in a

highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

• No combinational cycles

• Single clock signal shared

among all clocked devices

• Only care about value of

combinational circuits just

before rising edge of clock

• Period greater than every

combinational delay

• Change saved state after

noise- inducing logic

transitions have stopped!

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 22

SUNY – New Paltz
Elect. & Comp. Eng.

Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Q

D

Clock

Transition is missed on
first clock cycle, but
caught on next clock
cycle.

Transition is caught on
first clock cycle.

?

I II III

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

SUNY – New Paltz
Elect. & Comp. Eng.

Asynchronous Inputs in Sequential Systems

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places
in the circuit, but what about metastability?

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

Clocked
Synchronous

System

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 23

SUNY – New Paltz
Elect. & Comp. Eng.

Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable

conditions will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In above, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Can be
metastable
right after
sampling

Very unlikely to be
metastable for >1
clock cycle

Extremely unlikely to
be metastable for >2
clock cycle

SUNY – New Paltz
Elect. & Comp. Eng.

Finite State Machines (FSM)
 State diagrams are representations of Finite State Machines (FSM)

 Mealy FSM
 Output depends on input and state
 Output is not synchronized with clock
 can have temporarily unstable output

 Moore FSM
 Output depends only on state

25

Mealy
FSM

Moore
FSM

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 24

SUNY – New Paltz
Elect. & Comp. Eng.

Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs

+

present
state

outputs

+

next
state

n n

SUNY – New Paltz
Elect. & Comp. Eng.

Two Types of FSMs

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

n

Flip-
Flops

Comb.
Logic

D Q
n

CLK

Moore and Mealy FSMs : different output generation

• Moore FSM:
next
state

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 25

SUNY – New Paltz
Elect. & Comp. Eng.

Example: Light Switch

0/LIGHT
= 0

1/LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram
BUTTON=1

PS NS
Q Butto

n
Q & D Light

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

D Q

Q

Q

Button

D = Q’B + QB’
Light = Q

Note: B = Button

Light

D Q LIGHTBUTTON
CLK

0

1

Register

SUNY – New Paltz
Elect. & Comp. Eng.

Example: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

BUTTON=1

D Q LIGHTBUTTON
CLK

0

1

Combinational logic

Register

• Logic diagram

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 26

SUNY – New Paltz
Elect. & Comp. Eng.

Clocked circuit for on/off button

output light; reg light;
always @ (posedge clk) begin
if (button) light <= ~light;

module onoff(clk,button,light);
input clk,button;

end
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

SUNY – New Paltz
Elect. & Comp. Eng.

Clocked circuit for on/off button

output light; reg light;
always @ (posedge clk) begin
if (button) light <= ~light;

module onoff(clk,button,light);
input clk,button;

end
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work
with a 1Mhz
CLK?

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 27

SUNY – New Paltz
Elect. & Comp. Eng.

Example: 4-bit Counter

+1

clk

count
44

• Logic diagram

4-bit counter
module counter(clk, count);
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+1;

End
endmodule

• Verilog

SUNY – New Paltz
Elect. & Comp. Eng.

Example: 4-bit Counter

1

0

+1

enb clk

count
44

• Logic diagram

4-bit counter with enable
module counter(clk,enb,count);
input clk,enb;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= enb ? count+1 : count;

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

end
endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 28

SUNY – New Paltz
Elect. & Comp. Eng.

Example: 4-bit Counter

0 1
1

0
0

+1

enb clr clk

count
44

• Logic diagram

4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @(posedge clk) begin
count <= clr ? 4’b0 : (enb ? count+1 : count);

end
endmodule

• Verilog

SUNY – New Paltz
Elect. & Comp. Eng.

4-bit Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);
input CLK, RESET, SI;
output [3:0] Q;
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET) begin
if (RESET)
Q <= 4'b0000;

else
Q <= {Q[2:0], SI};
end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 29

SUNY – New Paltz
Elect. & Comp. Eng.

4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;
output CO;
reg [3:0] Q;
assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;
always@(posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 4'b0000;
else if (EN)
Q <= Q + 4'b0001;
end

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Sequence Detector

 Circuit specification:
Design a circuit that outputs a 1 when three consecutive 1’s have been

received as input and 0 otherwise.

 FSM type
Moore or Mealy FSM?
 » Both possible
 » Chose Moore to simplify diagram
 State diagram:
 » State S0: zero 1s detected
 » State S1: one 1 detected
 » State S2: two 1s detected
 » State S3: three 1s detected

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 30

SUNY – New Paltz
Elect. & Comp. Eng.

Sequence Detector: Verilog (Moore FSM)
module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection

input x, clk;
output y;
reg [1:0] state;
parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11;

// Define the sequential block
always @(posedge clk)

case (state)
S0: if (x) state <= S1;

else state <= S0;
S1: if (x) state <= S2;

else state <= S0;
S2: if (x) state <= S3;

else state <= S0;
S3: if (x) state <= S3;

else state <= S0;
endcase

// Define output during S3
assign y = (state == S3);
endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Sequence Detector: Verilog (Mealy FSM)
module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection
input x, clk;
output y; reg y;
parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11;
// Next state and output combinational logic
// Use blocking assignments "="
always @(x or pstate)
case (pstate)
S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end
S1: if (x) begin nstate = S2; y = 0; end

else begin nstate = S0; y = 0; end
S2: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
S3: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
endcase

// Sequential logic, use nonblocking assignments "<="
always @(posedge clk)

pstate <= nstate;
endmodule

S1

S2S3

0/0 1/0

1/1

0/0
0/0

1/1

0/0

S0 1/0

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 31

SUNY – New Paltz
Elect. & Comp. Eng.

Verilog
Operator

Name Functional
Group

[] bit-select or part-
select

() parenthesis

!
~
&
|

~&
~|
^

~^ or ^~

logical negation
negation
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR

logical
bit-wise

reduction
reduction
reduction
reduction
reduction
reduction

+
-

unary (sign) plus
unary (sign) minus

arithmetic
arithmetic

{ } concatenation concatenation

{{ }} replication replication

*
/
%

multiply
divide
modulus

arithmetic
arithmetic
arithmetic

Verilog
Operator

Name Functional
Group

+
-

binary plus
binary minus

arithmetic
arithmetic

<<
>>

shift left
shift right

shift
shift

>
>=
<

<=

greater than
greater than or equal
to
less than
less than or equal to

relational
relational
relational
relational

==
!=

case equality
case inequality

equality
equality

&
^
|

bit-wise AND
bit-wise XOR
bit-wise OR

bit-wise
bit-wise
bit-wise

&&
||

logical AND
logical OR

logical
logical

?: conditional conditional

SUNY – New Paltz
Elect. & Comp. Eng.

Testing a Verilog Model
 A model has to be tested and validated before it can be

successfully used.

 A test bench is a piece of Verilog code that can provide input
combinations to test a Verilog model for the system under
test.

 Test benches are frequently used during simulation to
provide sequences of inputs to the circuit or Verilog model
under test.

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 32

SUNY – New Paltz
Elect. & Comp. Eng.

SUNY – New Paltz
Elect. & Comp. Eng.

Testbench for the Structural Model of the
Two-Bit Greater-Than Comparator

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 33

SUNY – New Paltz
Elect. & Comp. Eng.

Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)
input A, B, C;
output D, E;
wire w1;
and # (30) G1 (w1, A, B);
not #10 G2 (E, C);
or #(20) G3 (D, w1, E);
endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Testing a Verilog Model (continued)
 Test bench for testing a 4-bit binary adder:

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 34

SUNY – New Paltz
Elect. & Comp. Eng.

Interaction between stimulus
and design modules

SUNY – New Paltz
Elect. & Comp. Eng.

Arithmetic in Verilog
module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5);

input [2:0] A, B;

output [3:0] Y1;

output [4:0] Y3;

output [2:0] Y2, Y4, Y5;

reg [3:0] Y1;

reg [4:0] Y3;

reg [2:0] Y2, Y4, Y5;

always @(A or B)

begin

Y1=A+B;//addition

Y2=A-B;//subtraction

Y3=A*B;//multiplication

Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 35

SUNY – New Paltz
Elect. & Comp. Eng.

Equality and inequality Operations in Verilog
module Equality (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output Y1, Y2;

output [2:0] Y3;

reg Y1, Y2;

reg [2:0] Y3;

always @(A or B)

begin

Y1=A==B;//Y1=1 if A equivalent to B

Y2=A!=B;//Y2=1 if A not equivalent to B

if (A==B)//parenthesis needed

Y3=A;

else

Y3=B;

end

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Logical Operations in Verilog
module Logical (A, B, C, D, E, F, Y);

input [2:0] A, B, C, D, E, F;

output Y;

reg Y;

always @(A or B or C or D or E or F)

begin

if ((A==B) && ((C>D) || !(E<F)))

Y=1;

else

Y=0;

end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 36

SUNY – New Paltz
Elect. & Comp. Eng.

Bit-wise Operations in Verilog
module Bitwise (A, B, Y);

input [6:0] A;

input [5:0] B;

output [6:0] Y;

reg [6:0] Y;

always @(A or B)

begin

Y[0]=A[0]&B[0]; //binary AND

Y[1]=A[1]|B[1]; //binary OR

Y[2]=!(A[2]&B[2]); //negated AND

Y[3]=!(A[3]|B[3]); //negated OR

Y[4]=A[4]^B[4]; //binary XOR

Y[5]=A[5]~^B[5]; //binary XNOR

Y[6]=!A[6]; //unary negation

end

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

. Concatenation and Replication in Verilog
 The concatenation operator "{ , }" combines (concatenates) the bits

of two or more data objects. The objects may be scalar (single bit) or
vectored (multiple bit). Multiple concatenations may be performed
with a constant prefix and is known as replication.

module Concatenation (A, B, Y);

input [2:0] A, B;

output [14:0] Y;

parameter C=3'b011;

reg [14:0] Y;

always @(A or B)

begin

Y={A, B, {2{C}}, 3'b110};

end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 37

SUNY – New Paltz
Elect. & Comp. Eng.

Shift Operations in Verilog

module Shift (A, Y1, Y2);

input [7:0] A;

output [7:0] Y1, Y2;

parameter B=3; reg [7:0] Y1, Y2;

always @(A)

begin

Y1=A<<B; //logical shift left

Y2=A>>B; //logical shift right

end

endmodule

SUNY – New Paltz
Elect. & Comp. Eng.

Conditional Operations in Verilog

module Conditional (Time, Y);

input [2:0] Time;

output [2:0] Y;

reg [2:0] Y;

parameter Zero =3b'000;

parameter TimeOut = 3b'110;

always @(Time)

begin

Y=(Time!=TimeOut) ? Time +1 : Zero;

end

endmodule

EGC 455
Design and Verification of System on Chip

9/23/2021

Introduction to Verilog 38

SUNY – New Paltz
Elect. & Comp. Eng.

Reduction Operations in Verilog
module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6);

input [3:0] A;

output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1, Y2, Y3, Y4, Y5, Y6;

always @(A)

begin

Y1=&A; //reduction AND

Y2=|A; //reduction OR

Y3=~&A; //reduction NAND

Y4=~|A; //reduction NOR

Y5=^A; //reduction XOR

Y6=~^A; //reduction XNOR

end

endmodule

